BT-Drucksache 16/1814

zu der Unterrichtung durch die Bundesregierung -16/288 Nr. 2.20- Vorschlag für eine Richtlinie des Europäischen Parlaments und des Rates über Luftqualität und saubere Luft für Europa KOM (2005) 447 endg.; Ratsdok. 14335/05

Vom 14. Juni 2006


Deutscher Bundestag Drucksache 16/1814
16. Wahlperiode 14. 06. 2006

Beschlussempfehlung und Bericht
des Ausschusses für Umwelt, Naturschutz und Reaktorsicherheit
(16. Ausschuss)

zu der Unterrichtung durch die Bundesregierung
– Drucksache 16/288 Nr. 2.20 –

Vorschlag für eine Richtlinie des Europäischen Parlaments und des
Rates über Luftqualität und saubere Luft für Europa
KOM (2005) 447 endg.; Ratsdok. 14335/05

A. Problem

1996 wurde die Rahmenrichtlinie Luftqualität verabschiedet, die einen gemein-
schaftlichen Rechtsrahmen für die Beurteilung und die Kontrolle der Luftquali-
tät der EU festlegte. Ferner wurden hierauf vier Einzelrichtlinien für bestimmte
Schadstoffe und eine Entscheidung des Rates erlassen, die den Austausch von
Informationen im Zusammenhang mit der Überwachung der Luftqualität regeln.

Ziel dieses Richtlinienvorschlags ist, fünf separate Rechtsakte auf dem Gebiet
der Luftqualität grundlegend zu überarbeiten und in einer einzigen Richtlinie
zusammenzuführen. Dadurch werden geltende Vorschriften, insbesondere in
Bezug auf die Überwachung und Berichterstattung, vereinfacht. Ferner sollen
neuen wissenschaftlichen Entwicklungen Rechnung getragen und Maßnahmen
in Bezug auf den neuen Luftschadstoff PM2,5 ergriffen werden.

B. Lösung

In Kenntnis der Unterrichtung durch die Bundesregierung – Drucksache 16/288
Nr. 2.20 – Annahme einer Entschließung der Fraktionen der CDU/CSU und
SPD, durch die die Bundesregierung aufgefordert werden soll, sich auf EU-
Ebene für eine Reihe von Änderungen des Richtlinienentwurfs einzusetzen.

Annahme einer Entschließung mit den Stimmen der Fraktionen CDU/CSU,
SPD und BÜNDNIS 90/DIE GRÜNEN gegen die Stimmen der Fraktion
DIE LINKE. bei Stimmenthaltung der Fraktion der FDP
C. Alternativen

Keine

D. Kosten

Wurden nicht erörtert.

Drucksache 16/1814 – 2 – Deutscher Bundestag – 16. Wahlperiode
Beschlussempfehlung

Der Bundestag wolle beschließen,

in Kenntnis der Unterrichtung durch die Bundesregierung – Drucksache 16/288
Nr. 2.20 – folgende Entschließung anzunehmen:

I. Der Deutsche Bundestag stellt fest:

Mit dem Richtlinienvorschlag sollen die Bestimmungen von vier Richtlinien
(Rahmenrichtlinie Luftqualität 96/62/EG plus drei Tochterrichtlinien (1999/30/
EG, 2000/69/EG, 2002/3/EG) und die Informationsaustauschentscheidung des
Rates (97/101/EG) zusammengefasst werden, um die geltenden Rechtsvor-
schriften zu vereinfachen, aufeinander abzustimmen und kompakter zu ma-
chen. Außerdem sollen den neuesten Entwicklungen im Gesundheitsbereich
und in der Wissenschaft sowie den Erfahrungen der Mitgliedstaaten Rechnung
getragen werden.

In der Folgenabschätzung zu diesem Vorschlag wurden hohe Kosten für die
Schäden veranschlagt, die die Menschen aufgrund ihrer Exposition gegenüber
Partikeln und Ozon tragen müssen. Der Vorschlag geht auf neue wissenschaftli-
che Erkenntnisse ein, indem Verpflichtungen zur Reduzierung der Exposition
des Menschen gegenüber PM2,5 in der Luft eingeführt werden.

Der Deutsche Bundestag begrüßt die Vorlage des neuen Richtlinienvorschlags
mit dem Ziel, ein hohes Schutzniveau für die menschliche Gesundheit und die
Umwelt zu erreichen.

Dabei werden die bereits eingeführten Luftqualitätsgrenz-, Alarm- oder Ziel-
werte aufrechterhalten. Die Mitgliedstaaten sind weiterhin gezwungen, Pläne
und Programme zu erstellen, um dort, wo Vorschriften nicht erfüllt werden,
Minderungsmaßnahmen durchzuführen. Ist den Mitgliedstaaten aber eine Er-
füllung der Vorschriften nicht möglich, sollen ihnen Fristverlängerungen er-
laubt werden.

Da der EU-Kommission überzeugende Nachweise vorgelegt wurden, dass klei-
nere Feinstäube (PM2,5) gefährlicher sind als größere Partikel, sieht der Vor-
schlag die Festlegung einer bis 2010 zu erreichenden Konzentrationsober-
grenze für PM2,5 in der Luft vor. Hinzu kommt ein nicht verbindliches Reduk-
tionsziel für PM2,5 zwischen 2010 und 2020 in allen großstädtischen Hinter-
grundgebieten der Mitgliedstaaten. Darüber hinaus ist eine umfassendere,
gemeinschaftsweit harmonisierte Überwachung von gesundheitsschädlichen
Luftschadstoffen vorgesehen, um ein besseres Verständnis, z. B. über PM2,5
und Ozon, zu erhalten.

Der Deutsche Bundestag ist allerdings der Auffassung, dass der Kommissions-
vorschlag in einigen Punkten verbesserungsbedürftig ist, weil nicht alle Rege-
lungen eine Vereinfachung bedeuten, sondern eher zu aufwändigem Mehrauf-
wand führen, ohne dass ein umweltpolitischer Fortschritt bewirkt wird.

So führt die Einführung einer Konzentrationsobergrenze mit Grenzwert-
charakter für PM2,5 zu erheblichem zusätzlichem Messaufwand und zu Dop-
pelarbeit in den Ländern. Diese müssten ca. 400 PM2,5-Messstationen neben
bereits vorhandenen PM10-Messstationen aufstellen, obwohl bekannt ist, dass
PM10 zu 60 bis 70 Prozent aus PM2,5 besteht. Die vorgeschlagene Kon-
zentrationsobergrenze von 25 μg/m3 als Jahresmittelwert entspricht 60 bis
70 Prozent des Jahresmittelwertes von 40 μg/m3 für PM10.

Eine Festlegung für einen Grenzwert bei PM2,5 sollte zum jetzigen Zeitpunkt

vermieden werden, weil bisher noch keine ausreichenden Daten zur Verfügung

Deutscher Bundestag – 16. Wahlperiode – 3 – Drucksache 16/1814

stehen. Der Deutsche Bundestag begrüßt deshalb bei PM2,5 eine Festlegung auf
Zielwerte.

II. Der Deutsche Bundestag fordert die Bundesregierung auf,

● an den in den bestehenden Luftreinhalterichtlinien geltenden Grenz-, Alarm-
und Zielwerten, insbesondere an den Grenzwerten für PM10, festzuhalten,
da sie erheblich zu den Erfolgen der europäischen Luftreinhaltung beigetra-
gen haben;

● die von der EU-Kommission vorgeschlagenen Regelungen für eine Konzen-
trationsobergrenze und das Ziel für die Reduzierung auf der Basis durch-
schnittlicher Expositionen für die Feinstäube PM2,5 nur dann zu unterstüt-
zen, wenn die Konzentrationsobergrenze in einen Zielwert umgewandelt
wird;

● sich für eine Reduzierung der großräumigen Belastung durch die Feinstäube
im Rahmen einer erweiterten fortgeschriebenen NEC-Richtlinie einzuset-
zen;

● dafür Sorge zu tragen, dass eine Verschiebung des Einhaltedatums für
Grenzwerte an die Voraussetzungen des Richtlinienvorschlags geknüpft
wird, wozu die Erstellung von Plänen und Programmen sowie die Begren-
zung der zugelassenen Überschreitung auf einen Höchstwert gehören, und
aus Gründen der Verhältnismäßigkeit bestimmte Gebiete, wie zum Beispiel
Fahrbahnen von Straßen, vom Geltungsbereich der Grenzwerte ausgenom-
men werden.

Berlin, den 17. Mai 2006

Der Ausschuss für Umwelt, Naturschutz und Reaktorsicherheit

Petra Bierwirth
Vorsitzende

Andreas Jung (Konstanz)
Berichterstatter

Delef Müller (Chemnitz)
Berichterstatter

Angelika Brunkhorst
Berichterstatterin

Lutz Heilmann
Berichterstatter

Sylvia Kotting-Uhl
Berichterstatterin

Von Seiten der Fraktion der CDU/CSU wurden die EU-
Maßnahmen zur Luftreinhaltepolitik begrüßt. Die bereits er-

Staaten bereits durchgeführt worden seien. Der Entschlie-
zielten Erfolge auf diesem Gebiet seien erheblich, so dass
der eingeschlagene Weg fortzusetzen sei. Einzelne Passagen
der Vorlage seien verbesserungswürdig. Hierauf habe auch
der Bundesrat hingewiesen. Der von den Fraktionen der

ßungsantrag der Fraktionen der CDU/CSU und SPD gehe
vom Konzept der Tagesgrenzwerte und nicht von Jahres-
mittelwerten aus und werde deshalb von der Fraktion der
FDP nicht in vollem Umfang mitgetragen.
Drucksache 16/1814 – 4 – Deutscher Bundestag – 16. Wahlperiode

Bericht der Abgeordneten Andreas Jung (Konstanz), Detlef Müller (Chemnitz),
Angelika Brunkhorst, Lutz Heilmann und Sylvia Kotting-Uhl

I.

Der Vorschlag für eine Richtlinie des Europäischen Parla-
ments und des Rates über Luftqualität und saubere Luft für
Europa – KOM (2005) 447 endg.; Ratsdok. 14335/05 –
wurde mit Überweisungsdrucksache 16/288 Nr. 2.20 zur
federführenden Beratung an den Ausschuss für Umwelt,
Naturschutz und Reaktorsicherheit und zur Mitberatung an
den Ausschuss für Wirtschaft und Technologie, den Aus-
schuss für Verkehr, Bau und Stadtentwicklung sowie an den
Ausschuss für die Angelegenheiten der Europäischen Union
überwiesen.

Der Ausschuss für Wirtschaft und Technologie hat mit
den Stimmen der Fraktionen CDU/CSU, SPD und
BÜNDNIS 90/DIE GRÜNEN gegen die Stimmen der Frak-
tion DIE LINKE. bei Stimmenthaltung der Fraktion der
FDP empfohlen, den Entschließungsantrag anzunehmen.
Im Übrigen hat er die Vorlage zur Kenntnis genommen.

Der Ausschuss für Verkehr, Bau und Stadtentwicklung
und der Ausschuss für die Angelegenheiten der Europä-
ischen Union haben die Vorlage einstimmig zur Kenntnis
genommen.

II.

Ziel des Richtlinienvorschlags ist es, fünf separate Rechts-
akte auf dem Gebiet der Luftqualität grundlegend zu überar-
beiten und in einer einzigen Richtlinie zusammenzuführen.
Dadurch werden geltende Vorschriften, insbesondere in Be-
zug auf die Überwachung und Berichterstattung, verein-
facht. Ferner soll neuen wissenschaftlichen Entwicklungen
Rechnung getragen werden. Schließlich werden Maßnah-
men in Bezug auf den neuen Luftschadstoff PM2,5 ergriffen.
In Bezug auf PM2,5 sind in dem Vorschlag Gemeinschafts-
ziele für jeden EU-Mitgliedstaat vorgegeben, doch bleibt es
den zuständigen Behörden überlassen, zu entscheiden, wie
sie am besten zu erreichen sind. Auf diese Weise wird
sichergestellt, dass für alle Bürger der EU Mindestnormen
gelten.

III.

Der Ausschuss für Umwelt, Naturschutz und Reaktorsi-
cherheit hat die Vorlage – KOM (2005) 447 endg.; Rats-
dok. 14335/05 – in seiner Sitzung am 17. Mai 2006 beraten.

In der Sitzung des Ausschusses am 17. Mai 2006 haben die
Fraktionen CDU/CSU und SPD einen Entschließungsantrag
zu der Vorlage eingebracht (siehe Beschlussempfehlung).

man, dass der Richtlinienvorschlag neuen wissenschaft-
lichen Erkenntnissen, wonach gerade kleine Feinstaubparti-
kel besonders gesundheitsgefährdend seien, Rechnung
trage. Jedoch lehne man die Festlegung zweier Grenzober-
werte im Bereich PM10 und PM2,5 ab. Die Einführung einer
Konzentrationsobergrenze mit Grenzwertcharakter für
PM2,5 führe zu erheblichem zusätzlichem Messaufwand
und zu Doppelarbeit bei den Ländern. Diese müssten ca.
400 PM2,5-Messstationen neben bereits vorhandenen
PM10 -Messstationen aufstellen, obwohl bekannt sei, dass
PM10 zu 60 bis 70 Prozent aus PM2,5 bestehe. Die Fraktion
der CDU/CSU hob ferner hervor, dass sich die Bundesregie-
rung für eine Reduzierung der großräumigen Belastung
durch die Feinstäube im Rahmen einer erweiterten fortge-
schriebenen NEC-Richtlinie einsetzen solle. Ferner habe sie
dafür Sorge zu tragen, dass eine Verschiebung des Inhalte-
datums für Grenzwerte an die Voraussetzungen des Richt-
linienvorschlags geknüpft werde. Hierzu gehörten die Er-
stellung von Plänen und Programmen sowie die Begrenzung
der zugelassenen Überschreitung auf einen Höchstwert.

Die Fraktion der SPD begrüßte die Zusammenführung
fünf separater Rechtsakte auf dem Gebiet der Luftqualität in
einer einzigen Richtlinie unter erstmaliger Aufnahme von
Regelungen für kleinere Feinstaubpartikel. Der gemeinsame
Entschließungsantrag der Fraktionen der CDU/CSU und
SPD ziele u. a. darauf ab, an den Grenzwerten für PM10 fest-
zuhalten, da sie erheblich zu den Erfolgen der europäischen
Luftreinhaltung beigetragen hätten. Eine Festlegung für ei-
nen Grenzwert bei PM2,5 solle zum jetzigen Zeitpunkt ver-
mieden werden, weil bisher noch keine ausreichenden Da-
ten zur Verfügung stünden. Begrüßenswert sei eine Festle-
gung auf Zielwerte bei PM2,5. Schließlich bedürfe es auch
weiterhin flankierender EU-Maßnahmen mit dem Ziel, ein
hohes Schutzniveau für die menschliche Gesundheit und die
Umwelt zu erreichen.

Die Fraktion der FDP hob hervor, sie halte den Jahresmit-
telwert bei PM10 von 40 μg/m3 für zu niedrig. Ehrgeizigere
Ziele seien daher anzustreben. Dort, wo aufgrund bestimm-
ter geografischer oder meteorologischer Bedingungen
strengere Werte nicht ohne weiteres eingehalten werden
könnten, müsse mit Ausnahmebestimmungen der besonde-
ren Situation Rechnung getragen werden. Auch die im
Richtlinienvorschlag vorgesehene Konzentrationsober-
grenze von 25 μg/m3 für PM2,5 sei unzureichend. Die vor-
geschlagene pauschale Reduktion von PM2,5 von
20 Prozent bis 2020 sei nicht zielführend, weil die EU-Mit-
gliedstaaten unterschiedliche Ausgangsbasen hätten. Die
FDP-Fraktion bevorzuge stattdessen ein so genanntes Stu-
fenmodell, das Maßnahmen honoriere, die in einigen EU-
CDU/CSU und SPD eingebrachte Entschließungsantrag sei
im Wesentlichen hierauf zurückzuführen. Zwar unterstütze

Die Fraktion DIE LINKE. vertrat die Auffassung, die Zu-
sammenfassung bestehender Richtlinien in einer neuen sei

Deutscher Bundestag – 16. Wahlperiode – 5 – Drucksache 16/1814

nicht zwingend erforderlich. Der Richtlinienvorschlag über
Luftqualität bedeute keine Verschärfung bestehender Rege-
lungen, sondern weiche die Grenzwerte für Feinstäube er-
heblich auf. Auch die Einräumung fünfjähriger Übergangs-
fristen zur Einhaltung der Grenzwerte nehme den Hand-
lungsdruck von den Kommunen und räume diesen die Mög-
lichkeit ein, Klagen von Anwohnern abzuwehren. Die
Fraktion DIE LINKE. lehne den Entschließungsantrag der
Fraktionen der CDU/CSU und SPD ab, weil sie die durch
den Richtlinienvorschlag vorgesehene Aufweichung der
Einhaltung der Grenzwerte nicht hinnehme. Völlig inakzep-
tabel sei es, wenn die bisherigen Grenzwerte auf Straßen
nicht mehr gelten sollten. Die Ausführungen der Fraktionen
der CDU/CSU und SPD zu PM2,5 seien nicht überzeugend.
Der kritisierte erhebliche zusätzliche Messaufwand bei
PM2,5 sei nicht nachvollziehbar, da bereits seit 1999 Daten
für PM2,5 erhoben würden.

Die Fraktion BÜNDNIS 90/DIE GRÜNEN begrüßte den
Richtlinienvorschlag als fortschrittlichen Beitrag zu Luft-
reinhaltung. Hinsichtlich der Vorschläge zur Begrenzung
der Feinstäube der Partikelgröße PM2,5 sei aber zweifelhaft,
ob dies tatsächlich zu einem effizienteren Gesundheits-
schutz oder lediglich zu einer aufwändigen doppelten Mess-
arbeit führe. Als Alternative erwägenswert sei die Einbrin-
gung einer Emmissionshöchstmenge für PM2,5 in die zur

Berlin, den 17. Mai 2006

Andreas Jung (Konstanz
Berichterstatter

orst

Lutz Heilmann
Berichterstatter
Novellierung anstehende Richtlinie über nationale Emmis-
sionshöchstmengen. Schließlich müsse auch der Belastung
durch Feinstäube in Innenräumen größere Aufmerksamkeit
gewidmet werden.

) Delef Müller (Chemnitz)
Berichterstatter

Angelika Brunkh
Berichterstatterin

Sylvia Kotting-Uhl
Berichterstatterin

Deutscher Bundestag – 16. Wahlperiode – 7 – Drucksache 16/1814

RAT DER
EUROPÄISCHEN UNION

Brüssel, den 18. November 2005 (21.11)
(OR. fr)

Interinstitutionelles Dossier:
2005/0183 (COD)

14335/05

ENV 525
ENER 170
IND 76
TRANS 232
ENT 141
CODEC 1010

VORSCHLAG
Absender: Europäische Kommission

vom: 17. November 2005

Betr.: Vorschlag für eine Richtlinie des Europäischen Parlaments und des Rates
über Luftqualität und saubere Luft für Europa

Die Delegationen erhalten in der Anlage den mit Schreiben von Herrn Jordi AYET PUIGARNAU,

Direktor, an den Generalsekretär/Hohen Vertreter, Herrn Javier SOLANA, übermittelten Vorschlag

der Kommission.

Anlage
Anl.: KOM(2005) 447 endgültig

Drucksache 16/1814 – 8 – Deutscher Bundestag – 16. Wahlperiode

KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN

Brüssel, den 21.9.2005
KOM(2005) 447 endgültig

2005/0183 (COD)

Vorschlag für eine

RICHTLINIE DES EUROPÄISCHEN PARLAMENTS UND DES RATES

über die Luftqualität und saubere Luft für Europa

(von der Kommission vorgelegt)

{SEK(2005) 1133}

Deutscher Bundestag – 16. Wahlperiode – 9 – Drucksache 16/1814

BEGRÜNDUNG

1. HINTERGRUND DES VORSCHLAGS

x Gründe und Ziele

Im Rahmen ihrer Initiative vom Juni 2002 für eine bessere Rechtsetzung schlug die
Kommission im Februar 2003 eine Strategie zur Aktualisierung und Vereinfachung
des Besitzstands der Gemeinschaft vor. Dadurch sollte das sekundäre Gemeinschafts-
recht klar, verständlich, aktuell und benutzerfreundlich gestaltet werden. Im Zuge
dieser Initiative sollen durch den vorliegenden Vorschlag die Bestimmungen von fünf
separaten Rechtsinstrumenten zu einer einzigen Richtlinie zusammengefasst werden,
um die geltenden Rechtsvorschriften zu vereinfachen, aufeinander abzustimmen und
kompakter zu machen. Weiter zielt der Vorschlag auf eine umfassende Änderung der
geltenden Bestimmungen ab, um neuesten Entwicklungen im Gesundheitsbereich und
in der Wissenschaft sowie die Erfahrungen der Mitgliedstaaten Rechnung zu tragen.

x Hintergrund

Schon lange ist bekannt, dass die Luftverschmutzung ein signifikantes Risiko für die
menschliche Gesundheit und für die Umwelt darstellt. Im Jahr 1996 wurde die
Rahmenrichtlinie Luftqualität verabschiedet, die einen gemeinschaftlichen Rechtsrah-
men für die Beurteilung und die Kontrolle der Luftqualität in der EU festlegte. Die
Rahmenrichtlinie enthielt weiter eine Liste prioritär zu berücksichtigender Schad-
stoffe, für die die Luftqualitätsziele in Einzelrechtsvorschriften festgelegt werden
sollten. Im Anschluss wurden vier Einzelrichtlinien für bestimmte Schadstoffe und
eine Entscheidung des Rates erlassen, die den Austausch von Informationen im
Zusammenhang mit der Überwachung der Luftqualität regelt.

In der Folgenabschätzung zu diesem Vorschlag wurden die Kosten für die Schäden
aufgrund der Exposition des Menschen gegenüber Partikeln und Ozon in der Luft
veranschlagt. Im Jahr 2000 führte die Exposition gegenüber Partikeln nach
Schätzungen zu einer Senkung der durchschnittlichen statistischen Lebenserwartung
im Europa der 25 um rund neun Monate. Dies entspricht dem Verlust von etwa
3,6 Millionen Lebensjahren beziehungsweise 348 000 vorzeitigen Todesfällen jähr-
lich. Darüber hinaus gab es schätzungsweise 21 400 vorzeitige Todesfälle aufgrund
von Ozonexposition. Es wird erwartet, dass hinsichtlich der Senkung schädlicher
Emissionen von Partikeln und ihren Vorläufern zwischen dem jetzigen Zeitpunkt und
2020 signifikante Fortschritte erzielt werden, so dass die durchschnittliche
Verkürzung der statistischen Lebenserwartung voraussichtlich auf etwa 5,5 Monate
reduziert werden kann. Für den gleichen Zeitraum wird darüber hinaus die Zahl der
vorzeitigen Todesfälle aufgrund von Ozonexposition voraussichtlich um 600 gesenkt
werden können. Die Kosten für die Schäden aufgrund dieser Auswirkungen wurden
bis 2020 auf 189 bis 609 Mrd. EUR jährlich veranschlagt.

x Bestehende einschlägige Rechtsvorschriften
Ziel dieses Vorschlags ist es, die folgenden Einzelvorschriften zu ändern und in einem
einzigen Rechtsakt zusammenzufassen.

Drucksache 16/1814 – 10 – Deutscher Bundestag – 16. Wahlperiode

Richtlinie 96/62/EG des Rates über die Beurteilung und die Kontrolle der Luftqualität
(„Rahmenrichtlinie“), ABl. L 296 vom 21.11.1996, S. 55.

Richtlinie 1999/30/EG des Rates über Grenzwerte für Schwefeldioxid, Stickstoff-
dioxid und Stickstoffoxide, Partikel und Blei in der Luft, ABl. L 163 vom 29.6.1999,
S. 41 („Erste Tochterrichtlinie“).

Richtlinie 2000/69/EG des Europäischen Parlaments und des Rates vom 16. Novem-
ber 2000 über Grenzwerte für Benzol und Kohlenmonoxid in der Luft, ABl. L 313
vom 13.12.2000, S. 12 („Zweite Tochterrichtlinie“).

Richtlinie 2002/3/EG des Europäischen Parlaments und des Rates vom 12. Februar 2002
über den Ozongehalt der Luft, ABl. L 67 vom 9.3.2002, S. 14 („Dritte Tochterricht-
linie“).

Entscheidung 97/101/EG des Rates vom 27. Januar 1997 zur Schaffung eines
Austausches von Informationen und Daten aus den Netzen und Einzelstationen zur
Messung der Luftverschmutzung in den Mitgliedstaaten, ABl. L 35 vom 5.2.1997,
S. 14 („Informationsaustauschsentscheidung“).

x Kohärenz mit anderen Politiken und Zielen der Union

Dieser Vorschlag steht im Einklang mit Artikel 175 des Vertrags zur Gründung der
Europäischen Gemeinschaft und zielt darauf ab, ein hohes Schutzniveau für die
menschliche Gesundheit und die Umwelt zu gewährleisten.

2. KONSULTATION BETROFFENER UND FOLGENABSCHÄTZUNG

x Konsultation interessierter Kreise

Konsultationsmethoden, Hauptadressaten und allgemeines Profil der Antwortenden

Es fanden etwa 13 Hauptsitzungen mit den Beteiligten statt, unter anderem mit den
Branchenvertretern der Industrie (Straßenfahrzeuge, Ölraffinerien, VOC-Industrie
und Vertreter der Industrie im Allgemeinen), den Mitgliedstaaten und NRO, unter
anderem dem Europäischen Umweltschutzbüro, dem Schwedischen Sekretariat für
Sauren Regen und der Weltgesundheitsorganisation (WHO). Darüber hinaus waren
auch die EFTA- und die Beitrittsländer zu diesen Sitzungen eingeladen. Weiter
fanden rund einhundert Sitzungen verschiedener technischer Arbeitsgruppen statt, die
von den Dienststellen der Kommission organisiert wurden. Außerdem wurde eine
Konsultation im Internet zu Fragen der thematischen Strategie zur Luftreinhaltung
abgehalten, die auch Themen des vorliegenden Vorschlags umfasste.

Zusammenfassung und Berücksichtigung der Antworten

Die Mitgliedstaaten und die übrigen Beteiligten befürworten im Allgemeinen die
Initiative der Kommission zur Vereinfachung der Rechtsvorschriften. Die Mitglied-
staaten (i) erkennen an, dass Maßnahmen in Bezug auf den neuen Luftschad-

stoff PM2,5 ergriffen werden müssen, (ii) haben hinsichtlich der absoluten Werte, die
für die Luftqualität im Einzelnen festgelegt werden könnten, Bedenken angesichts der

Deutscher Bundestag – 16. Wahlperiode – 11 – Drucksache 16/1814

potenziellen Kosten und der realistischen Möglichkeiten der Einhaltung dieser
Bestimmungen, und (iii) unterstützen das Konzept, die Exposition generell und
besonders dort zu reduzieren, wo die Verschmutzung am größten ist. Im Vorschlag ist
daher eine relativ hohe Konzentrationsobergrenze für PM2,5 vorgesehen, die in der
gesamten EU gelten soll und einen Schutz vor unannehmbar hohen Risiken
gewährleisten würde, Auflagen jedoch nur in den am stärksten verschmutzten
Gebieten vorsieht. Weiter wären die Mitgliedstaaten verpflichtet, PM2,5 an Stationen
im städtischen Hintergrund zu messen und für eine stufenweise Senkung der
gemessenen Durchschnittswerte entsprechend den gemessenen Verschmutzungs-
werten bis 2010 zu sorgen. So können die Mitgliedstaaten entscheiden, wie die
allgemeine Exposition am wirksamsten reduziert werden kann.

Vom 1. Dezember 2004 bis 31. Januar 2005 fand eine öffentliche Konsultation im
Internet statt. Daraufhin gingen bei der Kommission 11 578 Antworten ein. Die
Ergebnisse können aufgerufen werden unter
http://europa.eu.int/comm/environment/air/cafe/pdf/air_pollu_en.pdf.

x Einholung und Verwertung von Fachwissen

Betroffene Fachbereiche

Bei der Ausarbeitung dieses Vorschlags und der thematischen Strategie zur Luftrein-
haltung wurden Kenntnisse aus folgenden Fachbereichen einbezogen: (1) Auswirkun-
gen der Luftverschmutzung auf die menschliche Gesundheit, (2) integrierte Modell-
rechnungen und Entwicklung kostenwirksamer Kontrollstrategien, (3) Abschätzung
der Auswirkungen auf die Gesundheit mit Bezifferung der Kosten, (4) Abschätzung
des Nutzes für die Ökosysteme, (5) makroökonomische Modellrechnungen und
(6) Beurteilung und Kontrolle der Luftqualität.

Methode

Dienstleistungsaufträge, Zuschussvereinbarungen und von der Kommission einberu-
fene Sitzungen.

Wichtigste konsultierte Verbände und Fachleute

Weltgesundheitsorganisation, Internationales Institut für angewandte Systemanalyse,
AEA Technology, Übereinkommen über die weiträumige grenzüberschreitende Luft-
verunreinigung, Europäische Umweltagentur, Gemeinsame Forschungsstelle (ISPRA),
Arbeitsgruppe der Kommission für Partikel, Arbeitsgruppe der Kommission für die
Durchführung und Wissenschaftlicher Ausschuss Gesundheit und Umweltrisiken
(SCHER) der Europäischen Kommission.

Zusammenfassung der Stellungnahmen und Gutachten

Die umfangreichen bei der Kommission eingegangenen Angaben lassen sich wie folgt
zusammenfassen: (i) von PM2,5 geht ein Gesundheitsrisiko aus, (ii) PM2,5 ist ein
besserer Maßstab für vom Menschen verursachte Beiträge zu den Konzentrationen
von Partikeln in der Luft und (iii) das von der groben Fraktion (zwischen PM und
2,5
PM10) ausgehende Risiko kann nicht vernachlässigt werden.

Drucksache 16/1814 – 12 – Deutscher Bundestag – 16. Wahlperiode

Veröffentlichung der Stellungnahmen und Gutachten

Alle Berichte von Sachverständigen und alle Verträge wurden im Internet bereit-
gestellt, um sie für die Öffentlichkeit zugänglich zu machen.

x Folgenabschätzung

Die Kommission hat die folgenden Optionen für die Beschränkung der Exposition des
Menschen gegenüber PM2,5 geprüft. Bei jeder Option wird davon ausgegangen, dass
die derzeit geltenden Grenzwerte für PM10 in Kraft bleiben.

1) Einführung eines bis 2020 zu erreichenden Ziels für die Reduzierung der
Exposition gegenüber PM2,5, um die jährlichen Durchschnittskonzentrationen
von PM2,5 im städtischen Hintergrund um einen festgelegten Prozentsatz des
vom Mitgliedstaat gemessenen Durchschnitts im Zeitraum 2008-2010 zu
senken. Dieses Ziel ist so weit wie möglich zu erreichen, wird aber nicht
zwingend vorgeschrieben.

2) Ersetzen der Richtgrenzwerte für PM10 für 2010 durch einen verbindlich
vorgeschriebenen Grenzwert für jährliche Durchschnittskonzentrationen für
PM2,5, der bis 2015 zu erreichen ist. Ein solcher Grenzwert wäre so ausgelegt,
dass ein hohes Schutzniveau für die Bevölkerung gewährleistet wäre, und
würde im gesamten Gebiet der Mitgliedstaaten gelten;

3) Ersetzen der Richtgrenzwerte für PM10 für 2010 durch eine verbindlich
vorgeschriebene „Obergrenze“ für jährliche Durchschnittskonzentrationen für
PM2,5 von of 25μgm

-3, die bis 2010 zu erreichen ist. Eine solche Obergrenze
wäre so ausgelegt, dass unannehmbar hohe Risiken für die Bevölkerung
begrenzt würden;

4) Ersetzen der Richtgrenzwerte für PM10 für 2010 durch eine nicht verbindliche
Zielvorgabe für jährliche Durchschnittskonzentrationen für PM2,5, die
möglichst bis 2010 zu erreichen ist. Eine solche Zielvorgabe würde dem
Grenzwert der Option 2 entsprechen; und

5) Verzicht auf jede Maßnahme, d.h. keine Vorschriften zur Reduzierung der
Exposition des Menschen gegenüber PM2,5.

Angesichts der erheblichen Auswirkungen auf die europäische Wirtschaft ist Option 5,
das Untätigbleiben, nicht ernsthaft zu erwägen. Die Kommission schlägt eine
Kombination der Optionen 1 und 3 vor. Dies entspricht den Empfehlungen der WHO.
Die der Folgenabschätzung zugrunde liegenden Analysen zeigen, dass ein strenger
einheitlicher Grenzwert weniger kostenwirksam ist als Option 1, da ein Grenzwert die
größte Wirkung in den am stärksten verschmutzten Gebieten hätte, in denen nicht
notwendigerweise die meisten Menschen den Schadstoffen ausgesetzt sind. Der
Nutzen der bevorzugten Kombination wurde auf 37 - 120 Mrd. EUR jährlich veran-
schlagt, die Kosten auf rund 5 Mrd. EUR jährlich.
Aufgrund vereinfachter Vorschriften und aktualisierter Berichterstattungspflichten
wird voraussichtlich der Verwaltungsaufwand der Mitgliedstaaten verringert, doch
lässt sich dies nicht genau beziffern. Allerdings erfordern die Vorschläge in gewissem

Deutscher Bundestag – 16. Wahlperiode – 13 – Drucksache 16/1814

Umfang eine Intensivierung der Überwachung der Luftqualität, die damit verbun-
denen Kosten bewegen sich jedoch lediglich in einer Größenordnung von einigen
Millionen EUR. Dieses Vorgehen wird unser Verständnis der Luftverschmutzung
verbessern und dürfte es langfristig möglich machen, zur Beurteilung der Luftqualität
verstärkt auf Modelle statt die teurere Überwachung zurückzugreifen.

Der Bericht der im Arbeitsprogramm vorgesehenen Folgenabschätzung, die die
Kommission durchführte, kann aufgerufen werden unter
http://www.europa.eu./dg/env/cafe/index.

3. RECHTLICHE ASPEKTE DES VORSCHLAGS

x Zusammenfassung des Vorschlags

Dieser Vorschlag zielt darauf ab, fünf separate Rechtsakte des geltenden gemein-
schaftlichen Besitzstands im Bereich der Luftqualität grundlegend zu überarbeiten
und in einer einzigen Richtlinie zusammenzuführen. Dadurch werden geltende
Vorschriften, insbesondere in Bezug auf die Überwachung und die Berichterstattung,
zwangsläufig vereinfacht und gestrafft. Weiter wird der Vorschlag einer Aktualisie-
rung der Vorschriften dienen, indem neuen wissenschaftlichen Entwicklungen Rech-
nung getragen wird und Kontrollen der Exposition des Menschen gegenüber PM2,5 in
der Luft eingeführt werden.

x Rechtsgrundlage

Rechtsgrundlage dieses Vorschlags ist Artikel 175 EG-Vertrag.

x Subsidiaritätsprinzip

Das Subsidiaritätsprinzip gelangt zur Anwendung, da der Vorschlag nicht in die
ausschließliche Zuständigkeit der Gemeinschaft fällt.

Die Ziele des Vorschlags können von den Mitgliedstaaten aus folgenden Gründen
nicht ausreichend verwirklicht werden:

Die geltenden Rechtsvorschriften sehen Mindestnormen für die Luftqualität in der
gesamten Gemeinschaft vor; dieser Grundsatz wird in der vereinfachten Fassung
beibehalten. Partikel verbreiten sich in der Luft grenzüberschreitend, so dass alle
Mitgliedstaaten Maßnahmen ergreifen müssen, damit die Risiken für die Bevölkerung
in allen Mitgliedstaaten verringert werden können.

Maßnahmen der Gemeinschaft werden die Ziele des Vorschlags aus folgenden
Gründen besser erfüllen:

Dieser Vorschlag zielt vor allem darauf ab, die geltenden Rechtsvorschriften, die
Mindestnormen für die Luftqualität in der gesamten Gemeinschaft vorsehen, zu
ändern und zu vereinfachen. Weiter haben PM2,5 eine erhebliche grenzüberschreitende
Wirkung, denn wenn Verschmutzungen freigesetzt werden oder sich in der

Atmosphäre bilden, können sie über tausende Kilometer weitergetragen werden.
Daher erfordert der Umfang des Problems ein gemeinschaftsweites Handeln.

Drucksache 16/1814 – 14 – Deutscher Bundestag – 16. Wahlperiode

Atmosphärensimulationen und Messungen der Luftverschmutzung belegen zweifels-
frei, dass die in einem Mitgliedstaat freigesetzte Verschmutzung zur gemessenen
Verschmutzung in anderen Mitgliedstaaten beiträgt. Dies macht deutlich, dass
einzelne Mitgliedstaaten die Probleme nicht allein lösen können und ein konzertiertes
Vorgehen auf EU-Ebene erforderlich ist.

Der Vorschlag ist gezielt darauf ausgerichtet, die geltenden Rechtsvorschriften zu
vereinfachen. In Bezug auf PM2,5 sind in dem Vorschlag Gemeinschaftsziele für jeden
Mitgliedstaat vorgegeben, doch bleibt es den zuständigen Behörden überlassen, zu
entscheiden, wie sie am besten zu erreichen sind; auf diese Weise wird sichergestellt,
dass für alle Bürger der EU Mindestnormen gelten.

Daher steht der Vorschlag mit dem Subsidiaritätsprinzip im Einklang.

x Grundsatz der Verhältnismäßigkeit

Der Vorschlag entspricht aus folgenden Gründen dem Verhältnismäßigkeitsprinzip:

Das hierfür gewählte Rechtsinstrument ist eine Richtlinie, da (1) der Vorschlag darauf
abzielt, bestehende Richtlinien zu vereinfachen; und (2) Zielvorgaben festgelegt
werden, die Einzelheiten der Durchführung jedoch den Mitgliedstaaten überlassen
werden, die über genauere Kenntnisse der lokalen Gegebenheiten verfügen und besser
beurteilen könne, durch welche Maßnahmen am kostenwirksamsten Verbesserungen
der Luftqualität erreicht werden können.

Der Vorschlag zielt darauf ab, die Überwachungs- und Berichterstattungsvorschriften
durch Einführung eines gemeinsamen Informationssystems und elektronischer
Berichterstattung zu vereinfachen. Außerdem werden bestimmte Berichterstattungs-
pflichten aufgehoben. Dadurch wird sich der Verwaltungsaufwand der Mitglied-
staaten verringern, auch wenn sich noch nicht im Einzelnen sagen lässt, in welchem
Umfang. Der Vorschlag wird zwar kurz- bis mittelfristig zusätzliche Überwachungs-
anforderungen mit sich bringen, doch wird dies längerfristig eingehendere wissen-
schaftliche Erkenntnisse in Bezug auf bestimmte Probleme der Luftverschmutzung
gestatten, die es wiederum langfristig möglich machen dürften, zur Beurteilung der
Luftqualität verstärkt auf Modelle statt die teurere Überwachung zurückzugreifen.
Daher sind langfristig Kosteneinsparungen bei der Überwachung zu erwarten.

x Wahl der Rechtsinstrumente

Vorgeschlagenes Rechtsinstrument: Richtlinie

Andere Mittel wären aus folgenden Gründen nicht geeignet:

Ziel dieses Vorschlags ist es, vier bestehende Richtlinien und eine Entscheidung des
Rates zu vereinfachen und in einem einzigen Rechtsinstrument zusammenzufassen.
Da außerdem in den geltenden Rechtsvorschriften Gemeinschaftsziele festgelegt
werden, die Wahl der Maßnahmen zur Erreichung dieser Ziele jedoch den
Mitgliedstaaten überlassen wird, ist eine Richtlinie das geeignetste Instrument.

Deutscher Bundestag – 16. Wahlperiode – 15 – Drucksache 16/1814

4. AUSWIRKUNGEN AUF DEN HAUSHALT

Die Kosten für den mit dem Vorschlag verbundenen Forschungsbedarf tragen die
Mitgliedstaaten; Die EU leistet hierzu einen Beitrag aus Gemeinschaftsmitteln, die im
siebten Forschungsrahmenprogramm, das die Kommission für die Finanzielle
Vorausschau 2007-2013 vorgeschlagen hat, bereits für diesen Zweck zugewiesen
wurden. Der Vorschlag hat keine Auswirkungen auf den Gemeinschaftshaushalt, die
über diese Maßnahmen hinausgehen.

5. ERGÄNZENDE INFORMATIONEN

x Vereinfachung

Der Vorschlag sieht eine Vereinfachung der Rechtsvorschriften und der Verwaltungs-
verfahren der öffentlichen Behörden (auf EU- oder einzelstaatlicher Ebene) vor.

Vier Richtlinien und eine Entscheidung des Rates werden in eine einzige Richtlinie
zusammengeführt. Überflüssige Bestimmungen werden aufgehoben, die Kohärenz
zwischen den einzelnen Rechtsakten verbessert und unnötige Verpflichtungen ge-
strichen. Nicht wesentliche Berichterstattungsanforderungen werden aufgehoben und
es ist vorgesehen, dass die Überwachung künftig ausschließlich auf elektronischem
Weg erfolgt, so dass der Verwaltungsaufwand für die Mitgliedstaaten verringert wird.

Die Überwachungs- und Berichterstattungsvorschriften werden durch Einführung der
elektronischen Berichterstattung vereinfacht. Dies sollte den internen Verwaltungs-
anforderungen der Mitgliedstaaten entgegenkommen.

Der Vorschlag ist Teil des laufenden Programms der Kommission zur Aktualisierung
und Vereinfachung des gemeinschaftlichen Besitzstands und ihres Legislativ- und
Arbeitsprogramms (CLWP 2004 1011 Vorausschau 2005).

x Aufhebung geltender Vorschriften

Durch die Annahme des Vorschlags werden geltende Vorschriften aufgehoben.

x Überprüfungs-/Revisions-/Verfallsklausel

Die Kommission überprüft innerhalb von fünf Jahren nach Annahme dieser Richtlinie
die Vorschriften in Bezug auf PM2,5. Insbesondere erarbeitet die Kommission einen
ausführlichen Vorschlag zur Festlegung verbindlicher Verpflichtungen zur Reduzie-
rung der Exposition, die der unterschiedlichen künftigen Situation hinsichtlich der
Luftqualität und dem unterschiedlichen Reduzierungspotenzial in den Mitgliedstaaten
Rechnung tragen.

x Entsprechungstabelle

Die Mitgliedstaaten werden aufgefordert, der Kommission den Wortlaut ihrer nationa-
len Vorschriften zur Umsetzung dieser Richtlinie mitzuteilen und eine Tabelle der
Entsprechungen zwischen diesen Vorschriften und denen der Richtlinie zu übermitteln.

Drucksache 16/1814 – 16 – Deutscher Bundestag – 16. Wahlperiode

x Europäischer Wirtschaftsraum

Die vorgeschlagene Maßnahme betrifft den Europäischen Wirtschaftsraum und sollte
daher auf diesen ausgedehnt werden.

x Ausführliche Erläuterung des Vorschlags

Da dieser Vorschlag vor allem darauf abzielt, mehrere Rechtstexte zu ändern und
zusammenzufassen und überflüssige Textstellen zu streichen, werden hier nur die
wichtigsten Änderungen der geltenden Rechtsvorschriften beschrieben.

Kapitel III (Kontrolle der Luftqualität)

Die Kommission schlägt nicht vor, die geltenden Luftqualitäts-Grenzwerte zu ändern,
sondern bestehende Vorschriften zu verschärfen, so dass die Mitgliedstaaten
gezwungen sind, Pläne oder Programme zu erstellen und durchzuführen, um dort, wo
Vorschriften nicht erfüllt werden, nachzubessern. Haben die Mitgliedstaaten jedoch
alle vertretbaren Maßnahmen ergriffen, sollen sie nach dem Vorschlag der
Kommission die Frist für die Erfüllung der Vorschriften in Gebieten, in denen die
Grenzwerte noch nicht eingehalten werden, verlängern können, wenn bestimmte
objektive Kriterien erfüllt sind. Jede Fristverlängerung ist der Kommission zu melden.
Darüber hinaus bestätigt die Kommission den Ansatz der geltenden
Rechtsvorschriften, dass durch natürliche Quellen bedingte Schadstoffemissionen
hinsichtlich der Einhaltung der Vorschriften nicht berücksichtigt werden.

Es liegen überzeugende Nachweise dafür vor, dass Feinstaub (PM2,5) gefährlicher ist
als größere Partikel. Allerdings darf die grobe Fraktion (Partikel zwischen 2,5 bis
10 μm Durchmesser) nicht vernachlässigt werden. Daher ist ein neuer Ansatz zur
Bekämpfung von PM2,5 erforderlich, um die bestehenden Maßnahmen für PM10 zu
ergänzen. Dies wird vom Wissenschaftlichen Ausschuss Gesundheit und Umwelt-
risiken unterstützt. Der vorgeschlagene Ansatz sieht die Festlegung einer bis 2010 zu
erreichenden Konzentrationsobergrenze für PM2,5 in der Luft vor, um unannehmbar
hohe Risiken für die Bevölkerung zu vermeiden. Gleichzeitig wird ein nicht
verbindliches Ziel für die allgemeine Reduzierung der Exposition des Menschen
gegenüber PM2,5 zwischen 2010 und 2020 in allen Mitgliedstaaten vorgeschlagen, das
anhand von Messdaten festgelegt wird.

Im Vorschlag ist darüber hinaus eine umfassendere Überwachung bestimmter Schad-
stoffe wie PM2,5 vorgesehen. Dies wird ein eingehenderes Verständnis dieses Schad-
stoffs ermöglichen und zu einer sinnvolleren Entwicklung der Strategie in der Zukunft
führen. Außerdem sollte es diese Überwachung langfristig ermöglichen, zur Beurteilung
der Luftverschmutzung mehr auf Modellrechnungen und objektive Schätzungen zurück-
zugreifen. Dadurch könnte teilweise auf die teurere Überwachung verzichtet werden.

Kapitel V (Informations- und Berichtspflicht):

Die Kommission schlägt die Einführung eines Systems für die elektronische
Berichterstattung auf der Grundlage des gemeinsamen Informationssystems im
Rahmen von INSPIRE1 vor. Dadurch lassen sich administrativer Aufwand einsparen,
1 KOM(2004) 516 endgültig.

Deutscher Bundestag – 16. Wahlperiode – 17 – Drucksache 16/1814

Informationsflüsse verkürzen, Beurteilungsmöglichkeiten verbessern und der Zugang
der Öffentlichkeit zu den Informationen vereinfachen. Die Bestimmungen in Bezug
auf die Berichtsverfahren der Entscheidung des Rates über den Austausch von
Informationen bleiben in Kraft, bis im Rahmen der INSPIRE-Richtlinie neue
Durchführungsbestimmungen erlassen werden.

Drucksache 16/1814 – 18 – Deutscher Bundestag – 16. Wahlperiode

2005/0183 (COD)

Vorschlag für eine

RICHTLINIE DES EUROPÄISCHEN PARLAMENTS UND DES RATES

über die Luftqualität und saubere Luft für Europa

(Text von Bedeutung für den EWR)

DAS EUROPÄISCHE PARLAMENT UND DER RAT DER EUROPÄISCHEN UNION –

gestützt auf den Vertrag zur Gründung der Europäischen Gemeinschaft, insbesondere auf
Artikel 175,

auf Vorschlag der Kommission1,

nach Stellungnahme des Europäischen Wirtschafts- und Sozialausschusses2,

nach Stellungnahme des Ausschusses der Regionen3,

gemäß dem Verfahren des Artikels 251 EG-Vertrag4,

in Erwägung nachstehender Gründe:

(1) In dem durch Beschluss Nr. 1600/2002/EG des Europäischen Parlaments und des
Rates vom 22. Juli 20025 verabschiedeten sechsten Umweltaktionsprogramm der
Europäischen Gemeinschaft wurde festgelegt, dass die Verschmutzung auf ein Maß
reduziert werden muss, bei dem schädliche Auswirkungen auf die menschliche
Gesundheit möglichst gering sind, wobei empfindliche Bevölkerungsgruppen und
auch die Umwelt insgesamt besonders zu berücksichtigen sind, und dass
Überwachung und Beurteilung der Luftqualität, unter anderem die Ablagerung von
Schadstoffen, verbessert und Informationen an die Öffentlichkeit verbreitet werden
müssen.

(2) Zum Schutz der menschlichen Gesundheit und der Umwelt insgesamt sind Emissionen
von Luftschadstoffen zu vermeiden, zu verhindern oder zu verringern und ange-
messene Luftqualitätsnormen festzulegen, wobei die einschlägigen Normen, Leitlinien
und Programme der Weltgesundheitsorganisation (WHO) zu berücksichtigen sind.

1 ABl. […] vom […], S. […].
2
ABl. […] vom […], S. […].
3 ABl. […] vom […], S. […].
4 Stellungnahme des Europäischen Parlaments vom […], Gemeinsamer Standpunkt des Rates vom […]
5 ABl. L 242 vom 10.9.2002, S. 1.

Deutscher Bundestag – 16. Wahlperiode – 19 – Drucksache 16/1814

(3) Die Richtlinie 96/62/EG des Rates vom 27. September 1996 über die Beurteilung und
die Kontrolle der Luftqualität6, die Richtlinie 1999/30/EG des Rates vom 22. April 1999
über Grenzwerte für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide, Partikel
und Blei in der Luft7, die Richtlinie 2000/69/EG des Europäischen Parlaments und des
Rates vom 16. November 2000 über Grenzwerte für Benzol und Kohlenmonoxid in
der Luft8, die Richtlinie 2002/3/EG des Europäischen Parlaments und des Rates über
den Ozongehalt der Luft9 und die Entscheidung 97/101/EG des Rates vom
27. Januar 1997 zur Schaffung eines Austausches von Informationen und Daten aus
den Netzen und Einzelstationen zur Messung der Luftverschmutzung in den
Mitgliedstaaten10 müssen grundlegend geändert werden, damit den neuesten
wissenschaftlichen Erkenntnissen und Entwicklungen im Bereich der Gesundheit und
den Erfahrungen der Mitgliedstaaten Rechnung getragen werden kann. Im Interesse
der Klarheit, Vereinfachung und der effizienten Verwaltung ist es daher angemessen,
diese fünf Rechtsakte durch eine einzige Richtlinie zu ersetzen.

(4) Wenn ausreichende Erfahrungen mit der Anwendung der Richtlinie 2004/107/EG des
Europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen,
Kadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in
der Luft11 gemacht wurden, kann erwogen werden, ihre Bestimmungen in die
vorliegende Richtlinie aufzunehmen.

(5) Für die Beurteilung der Luftqualität sollte ein einheitlicher Ansatz gelten, dem
gemeinsame Beurteilungskriterien zugrunde liegen. Bei der Beurteilung der Luft-
qualität sollte der Größe der der Luftverschmutzung ausgesetzten Bevölkerung und
Ökosysteme Rechnung getragen werden. Daher sollte das Staatsgebiet der einzelnen
Mitgliedstaaten in Gebiete oder Ballungsräume aufgeteilt werden, die der
Bevölkerungsdichte entsprechen.

(6) Damit gewährleistet ist, dass die gesammelten Daten zur Luftverschmutzung
hinreichend repräsentativ und gemeinschaftsweit vergleichbar sind, ist es wichtig, dass
für die Beurteilung der Luftqualität eine standardisierte Messtechnik und gemeinsame
Kriterien für die Anzahl und die Wahl der Standorte der Messstationen Anwendung
finden. Da die Luftqualität auch mit Hilfe anderer Techniken als Messungen beurteilt
werden kann, müssen Kriterien für die Verwendung und der erforderliche
Genauigkeitsgrad dieser Techniken festgelegt werden.

(7) Es sollten ausführliche Messungen von Feinstaub im Hintergrund vorgenommen
werden, um genauere Kenntnisse zu den Auswirkungen dieses Schadstoffs zu erhalten
und geeignete Strategien zu entwickeln. Diese Messungen sollten im Einklang mit
denen des Programms über die Zusammenarbeit bei der Messung und Bewertung der
weiträumigen Übertragung von luftverunreinigenden Stoffen in Europa ("EMEP")

6 ABl. L 296 vom 21.11.1996, S. 55. Richtlinie geändert durch Verordnung (EG) Nr. 1882/2003 des
Europäischen Parlaments und des Rates (ABl. L 284 vom 31.10.2003, S. 1).

7 ABl. L 163 vom 29.6.1999, S. 41. Richtlinie geändert durch die Entscheidung 2001/744/EG der
Kommission (ABl. L 278 vom 23.10.2001, S. 35).

8 ABl. L 313 vom 13.12.2000, S. 12.
9
ABl. L 67 vom 9.3.2002, S. 14.
10 ABl. L 35 vom 5.2.1997, S. 14. Entscheidung geändert durch die Entscheidung der Kommission

2001/752/EG (ABl. L 282 vom 26.10.2001, S. 69).
11 ABl. L 23 vom 26.1.2005, S. 3.

Drucksache 16/1814 – 20 – Deutscher Bundestag – 16. Wahlperiode

erfolgen, welches gemäß dem Übereinkommen von 1979 über weiträumige grenzüber-
schreitende Luftverunreinigung, angenommen durch Beschluss 81/462/EWG des
Rates vom 11. Juni 1981, erstellt wurde12.

(8) Wo bereits eine gute Luftqualität gegeben ist, sollte sie aufrechterhalten oder noch
weiter verbessert werden. Wenn Luftqualitätsnormen überschritten werden, sollten die
Mitgliedstaaten Maßnahmen ergreifen, um die festgesetzten Werte einzuhalten;
allerdings sollten Überschreitungen, die auf die Streuung von Straßen mit Sand im
Winter zurückzuführen sind, unberücksichtigt bleiben.

(9) Das von der Luftverschmutzung ausgehende Risiko für die Vegetation ist für Bestände
außerhalb der städtischen Gebiete am größten. Die Beurteilung solcher Risiken und
die Einhaltung der Luftqualitätsnormen zum Schutz der Vegetation sollte daher auf
Standorte außerhalb bebauter Gebiete konzentriert werden.

(10) Feinstaub (PM2,5) hat erhebliche negative Auswirkungen für die menschliche Gesund-
heit. Außerdem wurde bisher keine feststellbare Schwelle ermittelt, unterhalb der
PM2,5 kein Risiko für die menschliche Gesundheit darstellt. Daher sollten für diesen
Schadstoff andere Regeln gelten als für andere Luftschadstoffe. Dieser Ansatz sollte
auf eine generelle Senkung der Konzentrationen bei städtischen Hintergrundwerten
abzielen, um für große Teile der Bevölkerung eine bessere Luftqualität zu gewähr-
leisten. Damit jedoch überall ein Mindestniveau des Gesundheitsschutzes gewähr-
leistet ist, sollte der Ansatz mit der Vorgabe absoluter Konzentrationsobergrenzen
kombiniert werden.

(11) Die bestehenden langfristigen Ziele der Gewährleistung eines wirksamen Schutzes
gegen schädliche Auswirkungen der Ozonexposition auf die menschliche Gesundheit
sowie auf Vegetation und Ökosysteme sollten unverändert beibehalten werden. Im
Hinblick auf den Schutz der gesamten Bevölkerung und besonderes empfindlicher
Bevölkerungsgruppen vor kurzen Expositionen und erhöhten Ozonkonzentrationen
sollten eine Alarmschwelle beziehungsweise eine Informationsschwelle für Ozon-
konzentrationen in der Luft festgelegt werden. Bei Überschreitung dieser
Schwellenwerte sollten Informationen für die Öffentlichkeit über die Gefahren der
Exposition verbreitet, bei Überschreitung der Alarmschwelle geeignete kurzfristige
Maßnahmen zur Senkung der Ozonwerte ergriffen werden.

(12) Ozon ist ein grenzüberschreitender Schadstoff, der sich in der Atmosphäre durch
Emissionen von Primärschadstoffen bildet, die Gegenstand der Richtlinie 2001/81/EG
des Europäischen Parlaments und des Rates vom 23. Oktober 2001 über nationale
Emissionshöchstmengen für bestimmte Luftschadstoffe13 sind. Fortschritte im
Hinblick auf die in dieser Richtlinie vorgesehenen Zielvorgaben für die Luftqualität
und langfristigen Ziele für Ozon sollten anhand der geltenden und/oder geänderten
Ziele und Emissionshöchstmengen der Richtlinie 2001/81/EG ermittelt werden.

(13) In Gebieten, in denen langfristige Ziele überschritten werden, sollten ortsfeste Messun-
gen vorgeschrieben werden. Zur Verringerung der erforderlichen Zahl ortsfester
Probenahmestellen sollte die Anwendung zusätzlicher Verfahren zugelassen werden.
12 ABl. L 171 vom 27.6.1981, S. 11.
13 ABl. L 309 vom 27.11.2001, S. 22. Richtlinie geändert durch die Beitrittsakte von 2003.

Deutscher Bundestag – 16. Wahlperiode – 21 – Drucksache 16/1814

(14) Durch natürliche Quellen bedingte Schadstoffemissionen in die Luft können zwar
gemessen, aber nicht beeinflusst werden. Daher sollten durch natürliche Quellen
bedingte Schadstoffanteile in der Luft, die sich mit hinreichender Genauigkeit
bestimmen lassen, bei der Bewertung der Einhaltung der Luftqualitätsgrenzwerte
abgezogen werden.

(15) Bereits geltende Luftqualitätsgrenzwerte sollten unverändert bleiben, doch sollte es
möglich sein, die Frist innerhalb der diese Werte erreicht werden müssen, zu
verlängern, wenn es in bestimmten Gebieten und Ballungsräumen trotz der
Anwendung geeigneter Verschmutzungsbekämpfungsmaßnahmen ernsthafte Probleme
hinsichtlich der Einhaltung gibt. Werden für bestimmte Gebiete und Ballungsräume
Verlängerungen gewährt, ist jeweils ein umfassender Plan zu erstellen, um die
Einhaltung innerhalb der Verlängerungsfrist zu gewährleisten.

(16) Für Gebiete und Ballungsräume, in denen die Schadstoffkonzentrationen in der Luft
die einschlägigen Luftqualitätsnormen zuzüglich zeitlich befristeter Toleranzmargen
überschreiten, sollten Pläne oder Programme erstellt werden. Luftverschmutzung wird
durch viele verschiedene Quellen und Tätigkeiten verursacht. Damit die Kohärenz
zwischen verschiedenen Politiken gewährleistet ist, sollten solche Pläne und
Programme aufeinander abgestimmt und in die Pläne und Programme gemäß der
Richtlinie 2001/80/EG des Europäischen Parlaments und des Rates vom 23. Okto-
ber 2001 zur Begrenzung von Schadstoffemissionen von Großfeuerungsanlagen in die
Luft14, der Richtlinie 2001/81/EG und der Richtlinie 2002/49/EG des Europäischen
Parlaments und des Rates vom 25. Juni 2002 über die Bewertung und Bekämpfung
von Umgebungslärm15 einbezogen werden.

(17) Es sollten Pläne mit den Maßnahmen erstellt werden, die kurzfristig zu ergreifen sind,
wenn die Gefahr besteht, dass eine oder mehrere einschlägige Luftqualitätsnorm(en)
oder Alarmschwelle(n) überschritten werden, um diese Gefahr einzudämmen und die
Dauer der Überschreitung zu begrenzen. In Bezug auf Ozon sollten solche Pläne für
kurzfristige Maßnahmen der Entscheidung 2004/279/EG der Kommission vom
19. März 2004 über Leitlinien für die Umsetzung der Richtlinie 2002/3/EG des Euro-
päischen Parlaments und des Rates über den Ozongehalt der Luft16 Rechnung tragen.

(18) Da solche Pläne und Programme eine unmittelbare Verbesserung der Luftqualität und
der Umwelt bezwecken, sollte die Richtlinie 2001/42/EG des Europäischen Parla-
ments und des Rates vom 27. Juni 2001 über die Prüfung der Umweltauswirkungen
bestimmter Pläne und Programme17 auf sie keine Anwendung finden.

(19) Überschreitet die Konzentration eines Schadstoffs die einschlägigen Luftqualitäts-
normen zuzüglich der Toleranzmargen - oder gegebenenfalls die Alarmschwelle -
infolge einer größeren Verunreinigung in einem anderen Mitgliedstaat oder besteht die
Gefahr einer derartigen Überschreitung, sollten sich die Mitgliedstaaten konsultieren.
Wegen des grenzüberschreitenden Charakters bestimmter Schadstoffe wie Ozon und
Partikel könnte bei der Ausarbeitung und Durchführung von Plänen, Programmen und
Plänen für kurzfristige Maßnahmen sowie bei der Unterrichtung der Öffentlichkeit

14
ABl. L 309 vom 27.11.2001, S. 1. Richtlinie geändert durch die Beitrittsakte von 2003.
15 ABl. L 189 vom 18.7.2002, S. 12.
16 ABl. L 87 vom 25.3.2004, S. 50.
17 ABl. L 197 vom 21.7.2001, S. 30.

Drucksache 16/1814 – 22 – Deutscher Bundestag – 16. Wahlperiode

eine Koordinierung zwischen benachbarten Mitgliedstaaten notwendig sein. Gegebenen-
falls sollten die Mitgliedstaaten weiterhin mit Drittländern zusammenarbeiten, wobei
besonderer Wert auf eine frühzeitige Einbeziehung der Beitrittsländer zu legen ist.

(20) Voraussetzung für ein besseres Verständnis der Auswirkungen der Luftverschmutzung
und die Entwicklung geeigneter Strategien ist, dass die Mitgliedstaaten und die
Kommission Informationen über die Luftqualität sammeln, austauschen und
verbreiten. Zu den aktuellen Informationen über die Konzentrationen aller regulierten
Schadstoffe in der Luft sollte auch die Öffentlichkeit problemlos Zugang haben.

(21) Die Daten sind der Kommission genormt zu übermitteln, um Verarbeitung und
Vergleich der Informationen über die Luftqualität zu erleichtern.

(22) Die Verfahren für die Erstellung, Bewertung und Übermittlung von Daten über die
Luftqualität müssen angepasst werden, damit die Informationen vor allem auf
elektronischem Weg und über das Internet bereitgestellt werden können und damit
diese Verfahren mit der Richtlinie […]18 kompatibel sind.

(23) Es ist angemessen, die Anpassung der Kriterien und Techniken zur Beurteilung der
Luftqualität an den wissenschaftlichen und technischen Fortschritt vorzusehen und die
Berücksichtigung neuer Informationen zu ermöglichen. Darüber hinaus sollten, sofern
vorhanden, Referenztechniken für die Modellierung der Luftqualität festgelegt werden.

(24) Da die Luftqualitätsziele dieser Richtlinie auf Ebene der Mitgliedstaaten nicht
ausreichend erreicht werden können und wegen des grenzüberschreitenden Charakters
von Luftschadstoffen besser auf Gemeinschaftsebene erreicht werden können, kann
die Gemeinschaft diese Maßnahmen entsprechend dem in Artikel 5 EG-Vertrag
niedergelegten Subsidiaritätsprinzip ergreifen. Entsprechend dem in demselben Artikel
genannten Verhältnismäßigkeitsprinzip geht diese Richtlinie nicht über das für die
Erreichung dieser Ziele erforderliche Maß hinaus.

(25) Die Mitgliedstaaten sollten festlegen, welche Sanktionen bei einem Verstoß gegen die
innerstaatlichen Vorschriften zur Umsetzung dieser Richtlinie zu verhängen sind, und
deren Durchsetzung gewährleisten. Die Sanktionen sollten wirksam, verhältnismäßig
und abschreckend sein.

(26) Einige Bestimmungen der durch diese Richtlinie aufgehobenen Rechtsakte sollten
weiterhin in Kraft bleiben, damit die Kontinuität der geltenden Luftqualitätsgrenz-
werte für Stickstoffdioxid bis zur Festlegung neuer Werte ab 1. Januar 2010, der
Bestimmungen über die Berichterstattung über die Luftqualität bis zur Verabschie-
dung neuer Durchführungsvorschriften und der vorgeschriebenen Ausgangsbeurtei-
lung der Luftqualität gemäß der Richtlinie 2004/107/EG gewährleistet ist.

(27) Die Verpflichtung zur Umsetzung dieser Richtlinie in einzelstaatliches Recht sollte
sich auf die Bestimmungen beschränken, die eine wesentliche Änderung gegenüber
den Vorläuferrichtlinien darstellen. Die unveränderten Bestimmungen sind aufgrund
dieser vorhergehenden Richtlinien umzusetzen.
18 [ABl. L […] vom […]., S. […].]

Deutscher Bundestag – 16. Wahlperiode – 23 – Drucksache 16/1814

(28) Diese Richtlinie steht im Einklang mit den Grundrechten und Grundsätzen, die
insbesondere mit der Charta der Grundrechte der Europäischen Union anerkannt
wurden. Insbesondere soll durch diese Richtlinie gemäß Artikel 37 der Charta der
Grundrechte der Europäischen Union ein hohes Umweltschutzniveau und die
Verbesserung der Umweltqualität in die Politiken der Union einbezogen und nach dem
Grundsatz der nachhaltigen Entwicklung sichergestellt werden.

(29) Die zur Durchführung dieser Richtlinie erforderlichen Maßnahmen sollten gemäß dem
Beschluss 1999/468/EG des Rates vom 28. Juni 1999 zur Festlegung der Modalitäten
für die Ausübung der der Kommission übertragenen Durchführungsbefugnisse19

beschlossen werden –

HABEN FOLGENDE RICHTLINIE ERLASSEN:

Kapitel I
Allgemeine Bestimmungen

Artikel 1

Gegenstand

Die in dieser Richtlinie festgelegten Maßnahmen dienen folgenden Zielen:

1. Definition und Festlegung von Luftqualitätszielen im Hinblick auf die Vermeidung,
Verhütung oder Verringerung schädlicher Auswirkungen auf die menschliche
Gesundheit und die Umwelt insgesamt;

2. Beurteilung der Luftqualität in den Mitgliedstaaten anhand einheitlicher Methoden
und Kriterien und insbesondere Beurteilung von Konzentrationen bestimmter
Schadstoffe in der Luft;

3. Bereitstellung von Informationen zur Luftqualität als Beitrag zur Bekämpfung von
Umweltverschmutzungen und -belastungen und zur Überwachung der langfristigen
Tendenzen und der Verbesserungen, die aufgrund einzelstaatlicher und
gemeinschaftlicher Maßnahmen erzielt werden;

4. Gewährleistung des Zugangs der Öffentlichkeit zu solchen Informationen zur
Luftqualität;

5. Erhaltung der Luftqualität dort, wo sie bereits gut ist, und Verbesserung
unzureichender Luftqualität;

6. Förderung der verstärkten Zusammenarbeit zwischen den Mitgliedstaaten bei der
Verringerung der Luftverschmutzung.
19 ABl. L 184 vom 17.7.1999, S. 23.

Drucksache 16/1814 – 24 – Deutscher Bundestag – 16. Wahlperiode

Artikel 2

Begriffsbestimmungen

Für die Zwecke dieser Richtlinie gelten folgende Begriffsbestimmungen:

1. „Luft“ ist die Außenluft in der Troposphäre mit Ausnahme der Luft am Arbeitsplatz;

2. „Schadstoff“ ist jeder in der Luft vorhandene Stoff, der schädliche Auswirkungen auf
die menschliche Gesundheit und/oder die Umwelt insgesamt haben kann;

3. „Wert“ ist die Konzentration eines Schadstoffs in der Luft oder die Ablagerung eines
Schadstoffs auf bestimmten Flächen in einem bestimmten Zeitraum;

4. „Beurteilung“ sind alle Verfahren zur Messung, Berechnung, Vorhersage oder
Schätzung eines Schadstoffwertes in der Luft;

5. „Grenzwert“ ist ein Wert, der aufgrund wissenschaftlicher Erkenntnisse mit dem Ziel
festgelegt wird, schädliche Auswirkungen auf die menschliche Gesundheit und die
Umwelt insgesamt zu vermeiden, zu verhüten oder zu verringern, und der innerhalb
eines bestimmten Zeitraums erreicht werden muss und danach nicht überschritten
werden darf;

6. „Konzentrationsobergrenze“ ist ein Wert, der aufgrund wissenschaftlicher
Erkenntnisse mit dem Ziel festgelegt wird, unannehmbare Risiken für die
menschliche Gesundheit zu vermeiden; dieser Wert muss innerhalb eines bestimmten
Zeitraums erreicht werden und darf danach nicht überschritten werden;

7. „kritischer Wert“ ist ein aufgrund wissenschaftlicher Erkenntnisse festgelegter Wert,
dessen Überschreitung unmittelbare schädliche Auswirkungen für Rezeptoren wie
Pflanzen, Bäume oder natürliche Ökosysteme, aber nicht für den Menschen haben
kann;

8. „Toleranzmarge“ ist der Prozentsatz des Grenzwerts, um den dieser unter den in
dieser Richtlinie festgelegten Bedingungen überschritten werden darf;

9. „Zielwert“ ist ein Wert, der mit dem Ziel festgelegt wird, schädliche Auswirkungen
auf die menschliche Gesundheit und/oder die Umwelt insgesamt zu vermeiden, zu
verhüten oder zu verringern, und der soweit wie möglich in einem bestimmten
Zeitraum erreicht werden muss;

10. „Alarmschwelle“ ist ein Wert, bei dessen Überschreitung bei kurzfristiger Exposition
eine Gefahr für die menschliche Gesundheit besteht und bei dem die Mitgliedstaaten
unverzüglich Maßnahmen ergreifen;

11. „Informationsschwelle“ ist ein Wert, bei dessen Überschreitung bei kurzfristiger
Exposition ein Risiko für die menschliche Gesundheit für besonders empfindliche
Bevölkerungsgruppen besteht und bei dem unverzüglich geeignete Informationen
erforderlich sind;

Deutscher Bundestag – 16. Wahlperiode – 25 – Drucksache 16/1814

12. „obere Beurteilungsschwelle“ ist ein Wert, bei dessen Unterschreitung eine
Kombination von Messungen und Modellrechnungen zur Beurteilung der
Luftqualität angewandt werden kann;

13. „untere Beurteilungsschwelle“ ist ein Wert, bei dessen Unterschreitung nur
Methoden der Modellrechnung oder der objektiven Schätzung angewandt zu werden
brauchen;

14. „langfristiges Ziel“ ist ein langfristig zu erreichender Wert zum wirksamen Schutz
der menschlichen Gesundheit und der Umwelt, es sei denn, dies ist mit Maßnahmen,
die in einem angemessenen Verhältnis zum angestrebten Erfolg stehen, nicht
erreichbar;

15. „Gebiet“ ist ein Teil des Hoheitsgebiets eines Mitgliedstaates, das dieser
Mitgliedstaat für die Beurteilung und Kontrolle der Luftqualität abgegrenzt hat;

16. „Ballungsraum“ ist ein Gebiet, das eine Konurbation mit mehr als 250 000 Ein-
wohnern darstellt oder, wenn die Einwohnerzahl unter 250 000 liegt, mit einer
Bevölkerungsdichte pro km², die von den Mitgliedstaaten festzulegen ist;

17. „PM10“ sind die Partikel, die einen größenselektierenden Lufteinlass gemäß
EN 12341 passieren, der für einen aerodynamischen Durchmesser von 10 μm eine
Abscheidewirksamkeit von 50 % aufweist;

18. „PM2,5“ sind die Partikel, die einen größenselektierenden Lufteinlass gemäß
EN 14907 passieren, der für einen aerodynamischen Durchmesser von 2,5 μm eine
Abscheidewirksamkeit von 50 % aufweist;

19. „Indikator für die durchschnittliche Exposition“ ist ein anhand von Messungen an
Messstationen im städtischen Hintergrund über das gesamte Gebiet eines
Mitgliedstaats ermittelter Durchschnittswert für die Exposition der Bevölkerung;

20. „Ziel für die Reduzierung der Exposition“ ist eine prozentuale Reduzierung des
Indikators für die durchschnittliche Exposition, der mit dem Ziel festgesetzt wird,
schädliche Auswirkungen auf die menschliche Gesundheit zu verringern, und der
möglichst in einem bestimmten Zeitraum erreicht werden muss;

21. „Messstationen für den städtischen Hintergrund“ sind Standorte in städtischen
Gebieten, an denen die auftretenden Werte repräsentativ für die Exposition der
allgemeinen städtischen Bevölkerung sind;

22. „Stickstoffoxide“ sind die Summe der Volumenmischungsverhältnisse (ppbv) von
Stickstoffmonoxid und Stickstoffdioxid, ausgedrückt in der Einheit der
Massenkonzentration von Stickstoffdioxid (μg/m3);

23. „ortsfeste Messungen“ sind kontinuierlich oder stichprobenartig an festen Orten
durchgeführte Messungen zur Ermittlung der Werte entsprechend den geforderten
Datenqualitätszielen;
24. „orientierende Messungen“ sind Messungen, für die weniger strenge Qualitäts-
kriterien gelten als für ortsfeste Messungen;

Drucksache 16/1814 – 26 – Deutscher Bundestag – 16. Wahlperiode

25. „flüchtige organische Verbindungen“ (VOC) sind alle organischen Verbindungen
anthropogenen oder biogenen Ursprungs mit Ausnahme von Methan, die durch
Reaktion mit Stickstoffoxiden in Gegenwart von Sonnenlicht photochemische
Oxidantien erzeugen können.

Artikel 3

Verantwortungsbereiche

1. Die Mitgliedstaaten benennen auf den entsprechenden Ebenen die zuständigen
Behörden und die Stellen, denen die nachstehenden Aufgaben übertragen werden:

a) Beurteilung der Luftqualität;

b) Zulassung vom Messsystemen (Methoden, Ausrüstung, Netze, Laboratorien);

c) Sicherstellung der Qualität der Messungen;

d) Analyse der Beurteilungsmethoden;

e) Koordinierung der gemeinschaftlichen, von der Kommission durchgeführten
Qualitätssicherungsprogramme in ihrem Hoheitsgebiet;

f) Zusammenarbeit mit den übrigen Mitgliedstaaten und der Kommission.

Gegebenenfalls müssen die zuständigen Behörden und Stellen den Bestimmungen
des Anhangs I Abschnitt C entsprechen.

2. Die Mitgliedstaaten unterrichten die Öffentlichkeit hinsichtlich der zuständigen
Behörde oder Stelle, die für die in Absatz 1 genannten Aufgaben benannt wurde.

Kapitel II
Beurteilung der Luftqualität

ABSCHNITT 1
ALLGEMEINES

Artikel 4

Festlegung von Gebieten und Ballungsräumen

Die Mitgliedstaaten legen auf ihrem gesamten Staatsgebiet Gebiete und Ballungsräume fest.
In allen Gebieten und Ballungsräumen wird die Luftqualität beurteilt und kontrolliert.

Deutscher Bundestag – 16. Wahlperiode – 27 – Drucksache 16/1814

ABSCHNITT 2
BEURTEILUNG DER LUFTQUALITÄT IN BEZUG AUF SCHWEFELDIOXID,

STICKSTOFFDIOXID UND STICKSTOFFOXIDE, PARTIKEL, BLEI,
BENZOL UND KOHLENMONOXID

Artikel 5

Beurteilungsverfahren

1. Für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide, Partikel (PM10 und PM2,5),
Blei, Benzol und Kohlenmonoxid gelten die in Anhang II Abschnitt A festgelegten
oberen und unteren Beurteilungsschwellen für den Schutz der Gesundheit und der
Vegetation.

Alle Gebiete oder Ballungsräume werden anhand dieser Beurteilungsschwellen
eingestuft.

2. Die Einstufung nach Absatz 1 wird spätestens alle fünf Jahre nach dem in Anhang II
Abschnitt B festgelegten Verfahren überprüft.

Jedoch sind die Einstufungen bei signifikanten Änderungen der für die Konzentration
von Schwefeldioxid, Stickstoffdioxid und Stickstoffoxiden, Partikeln (PM10, PM2,5),
Blei, Benzol oder Kohlenmonoxid relevanten Aktivitäten früher zu überprüfen.

Artikel 6

Beurteilungskriterien

1. Die Mitgliedstaaten beurteilen die Luftqualität in Bezug auf die in Artikel 5
genannten Schadstoffe in ihrem gesamten Staatsgebiet entsprechend den in den
Absätzen 2, 3 und 4 festgelegten Kriterien.

2. In allen Gebieten und Ballungsräumen, in denen der Wert der Schadstoffe gemäß
Absatz 1 in der Luft die für diese Schadstoffe festgelegte obere Beurteilungsschwelle
überschreitet, sind zur Beurteilung der Luftqualität ortsfeste Messungen durchzufüh-
ren. Über diese ortsfesten Messungen hinaus können Modellrechnungen und/oder
orientierende Messungen durchgeführt werden, um angemessene Informationen über
die Luftqualität zu erhalten.

3. In allen Gebieten und Ballungsräumen, in denen der Wert der Schadstoffe gemäß
Absatz 1 in der Luft die für diese Schadstoffe festgelegte obere Beurteilungsschwelle
unterschreitet, kann zur Beurteilung der Luftqualität eine Kombination von ortsfesten
Messungen und Modellrechnungen und/oder orientierenden Messungen angewandt
werden.

4. In allen Gebieten und Ballungsräumen, in denen der Wert der Schadstoffe gemäß

Absatz 1 in der Luft die für diese Schadstoffe festgelegte untere Beurteilungs-
schwelle unterschreitet, brauchen zur Beurteilung der Luftqualität nur Modellrech-
nungen oder Techniken der objektiven Schätzung oder beide angewandt zu werden.

Drucksache 16/1814 – 28 – Deutscher Bundestag – 16. Wahlperiode

5. Zusätzlich zu den Beurteilungen gemäß den Absätzen 2, 3 und 4 sind Messungen an
Messstellen für Hintergrundwerte abseits signifikanter Luftverschmutzungsquellen
durchzuführen, um mindestens Informationen über Massenkonzentration und
chemische Speziation von Feinstaub (PM2,5) im Jahresdurchschnitt zu liefern; diese
Messungen sind unter Anwendung der folgenden Kriterien durchzuführen:

a) Es ist eine Probenahmestelle je 100 000 km2 einzurichten;

b) jeder Mitgliedstaat richtet mindestens eine Messstation ein, kann aber die
Einrichtung einer oder mehrerer gemeinsamer Messstationen für benachbarte
Gebiete mit angrenzenden Mitgliedstaaten vereinbaren, um die erforderliche
räumliche Auflösung zu erzielen;

c) gegebenenfalls ist die Überwachung mit der Strategie und den Messungen des
Programms über die Zusammenarbeit bei der Messung und Bewertung der
weiträumigen Übertragung von luftverunreinigenden Stoffen in Europa
(EMEP) zu koordinieren;

d) Anhang I Abschnitt A gilt für die Datenqualitätsziele für Massenkonzentrations-
messungen von Partikeln, Anhang IV findet uneingeschränkt Anwendung.

Darüber hinaus teilen die Mitgliedstaaten der Kommission mit, welche Messmetho-
den sie bei der Messung der chemischen Zusammensetzung von Feinstaub (PM2,5)
verwendet haben.

Artikel 7

Probenahmestellen

1. Für die Festlegung des Standorts von Probenahmestellen zur Messung von
Schwefeldioxid, Stickstoffdioxid und Stickstoffoxiden, Partikeln (PM10, PM2,5),
Blei, Benzol und Kohlenmonoxid in der Luft gelten die Kriterien des Anhangs III.

2. In allen Gebieten und Ballungsräumen, in denen ortsfeste Messungen die einzige
Informationsquelle für die Beurteilung der Luftqualität darstellen, darf die Anzahl
der Probenahmestellen für jeden relevanten Schadstoff nicht unter der in Anhang V
Abschnitt A festgelegten Mindestzahl von Probenahmestellen liegen.

Für Gebiete und Ballungsräume, in denen die Informationen aus Probenahmestellen
für ortsfeste Messungen durch solche aus Modellrechnungen und/oder orientierenden
Messungen ergänzt werden, kann die in Anhang V Abschnitt A festgelegte
Gesamtzahl der Probenahmestellen um bis zu 50 % verringert werden, sofern

a) die zusätzlichen Methoden ausreichende Informationen für die Beurteilung der
Luftqualität in Bezug auf Grenzwerte, Konzentrationsobergrenzen und Alarm-
schwellen sowie angemessene Informationen für die Öffentlichkeit liefern;

b) die Zahl der einzurichtenden Probenahmestellen und die räumliche Auflösung
anderer Techniken ausreichen, um die Konzentration des relevanten

Schadstoffs im Einklang mit den in Anhang I Abschnitt A festgelegten
Datenqualitätszielen zu ermitteln, und Beurteilungsergebnisse ermöglichen, die
den in Anhang I Abschnitt B festgelegten Kriterien entsprechen.

Deutscher Bundestag – 16. Wahlperiode – 29 – Drucksache 16/1814

Sind die in Unterabsatz 1 genannten Voraussetzungen gegeben, werden die
Ergebnisse von Modellrechnungen und/oder orientierenden Messungen bei der
Beurteilung der Luftqualität in Bezug auf die Grenzwerte oder Konzentrations-
höchstwerte berücksichtigt.

Artikel 8

Referenzmessmethoden

Die Mitgliedstaaten wenden die in Anhang VI Abschnitt A und Abschnitt C festgelegten
Referenzmessmethoden und Kriterien an.

Andere Messmethoden können angewandt werden, sofern die in Anhang VI Abschnitt B
festgelegten Bedingungen erfüllt sind.

ABSCHNITT 3
BEURTEILUNG DER LUFTQUALITÄT IN BEZUG AUF OZON

Artikel 9

Beurteilungskriterien

1. Haben in einem Gebiet oder Ballungsraum die Ozonkonzentrationen die in
Anhang VII Abschnitt A 3 festgelegten langfristigen Ziele in irgendeinem Jahr der
vorangehenden fünfjährigen Messperiode überschritten, müssen ortsfeste Messungen
vorgenommen werden.

2. Liegen die Daten für die gesamten fünf vorhergehenden Jahre nicht vollständig vor,
können die Mitgliedstaaten die Ergebnisse von kurzzeitigen Messkampagnen
während derjenigen Jahreszeit und an denjenigen Stellen, die für die höchsten
Schadstoffwerte typisch sein dürften, mit Informationen aus Emissionskatastern und
Modellen verbinden, um festzustellen, ob die in Absatz 1 genannten langfristigen
Ziele während dieser fünf Jahre überschritten wurden.

Artikel 10

Lage von Probenahmestellen für die Messung von Ozon

1. Für die Festlegung des Standorts von Probenahmestellen zur Messung von Ozon
gelten die Kriterien des Anhangs VIII.

2. Die Zahl der Probenahmestellen für ortsfeste Messungen von Ozon darf in Gebieten
und Ballungsräumen, in denen Messungen die einzige Informationsquelle für die
Beurteilung der Luftqualität darstellen, nicht unter der in Anhang IX Abschnitt A

festgelegten Mindestanzahl von Probenahmestellen liegen.

Drucksache 16/1814 – 30 – Deutscher Bundestag – 16. Wahlperiode

Für Gebiete und Ballungsräume, in denen die Informationen aus Probenahmestellen
für ortsfeste Messungen durch solche aus Modellrechnungen und/oder orientierenden
Messungen ergänzt werden, kann die in Anhang IX Abschnitt A festgelegte
Gesamtzahl der Probenahmestellen jedoch verringert werden, sofern

a) die zusätzlichen Methoden ausreichende Informationen für die Beurteilung der
Luftqualität in Bezug auf die Zielwerte, langfristigen Ziele sowie die
Informations- und Alarmschwellen liefern;

b) die Zahl der einzurichtenden Probenahmestellen und die räumliche Auflösung
anderer Techniken ausreichen, um die Ozonkonzentration im Einklang mit den
in Anhang I Abschnitt A festgelegten Datenqualitätszielen zu ermitteln, und
Beurteilungsergebnisse ermöglichen, die den in Anhang I Abschnitt B
festgelegten Kriterien entsprechen;

c) in jedem Gebiet oder Ballungsraum mindestens eine Probenahmestelle je zwei
Millionen Einwohner oder eine Probenahmestelle je 50 000 km² vorhanden
sind, je nachdem, was zur größeren Zahl von Probenahmestellen führt; in
jedem Fall muss es in jedem Gebiet oder Ballungsraum mindestens eine
Probenahmestelle geben;

d) Stickstoffdioxid an allen verbleibenden Probenahmestellen mit Ausnahme von
Stationen im ländlichen Hintergrund gemessen wird.

Sind die in Unterabsatz 2 genannten Voraussetzungen gegeben, werden die
Ergebnisse von Modellrechnungen und/oder orientierenden Messungen bei der
Beurteilung der Luftqualität in Bezug auf die Zielwerte berücksichtigt.

3. Die Konzentration an Stickstoffdioxid ist an mindestens 50 % der Ozonprobenahme-
stellen gemäß Anhang IX Abschnitt A zu messen. Außer bei Messstationen im
ländlichen Hintergrund gemäß Anhang VIII Abschnitt A, wo andere Messmethoden
angewandt werden können, sind diese Messungen kontinuierlich vorzunehmen.

4. In Gebieten und Ballungsräumen, in denen in jedem Jahr während der voran-
gehenden fünfjährigen Messperiode die Konzentrationen unter den langfristigen
Zielen liegen, ist die Zahl der Probenahmestellen für ortsfeste Messungen gemäß
Anhang IX Abschnitt B zu bestimmen.

5. Die Mitgliedstaaten sorgen dafür, dass in ihrem Hoheitsgebiet mindestens eine
Probenahmestelle zur Erfassung der Konzentrationen der in Anhang X aufgelisteten
Ozonvorläuferstoffe errichtet und betrieben wird. Sie legen die Zahl und die
Standorte der Stationen zur Messung von Ozonvorläuferstoffen unter Berücksichti-
gung der in Anhang X festgelegten Ziele und Methoden fest.

Artikel 11

Referenzmessmethoden

1. Die Mitgliedstaaten wenden die in Anhang VI Abschnitt A Nummer 8 festgelegte

Referenzmethode für die Messung von Ozon an. Andere Messmethoden können
angewandt werden, sofern die in Anhang VI Abschnitt B festgelegten Bedingungen
erfüllt sind.

Deutscher Bundestag – 16. Wahlperiode – 31 – Drucksache 16/1814

2. Die Mitgliedstaaten teilen der Kommission mit, welche der in Anhang X
vorgesehenen Methoden sie für Probenahme und Messung von VOC anwenden.

Kapitel III
Kontrolle der Luftqualität

Artikel 12

Anforderungen für Gebiete, in denen die Werte unterhalb der Grenzwerte und
Konzentrationshöchstwerte liegen

In Gebieten und Ballungsräumen, in denen die Werte von Schwefeldioxid, Stickstoffdioxid,
PM10, PM2,5, Blei, Benzol und Kohlenmonoxid in der Luft unter den jeweiligen in den
Anhängen XI und XIV festgelegten Grenzwerten und Konzentrationsobergrenzen liegen,
stellen die Mitgliedstaaten sicher, dass diese Luftqualität aufrechterhalten wird.

Artikel 13

Grenzwerte für den Schutz der menschlichen Gesundheit

1. Die Mitgliedstaaten stellen sicher, dass auf ihrem gesamten Staatsgebiet die Werte
für Schwefeldioxid, PM10, Blei und Kohlenmonoxid in der Luft die in Anhang XI
festgelegten Grenzwerte nicht überschreiten.

Die in Anhang XI festgelegten Grenzwerte für Stickstoffdioxid und Benzol dürfen
von dem in diesem Anhang festgelegten Zeitpunkt an nicht mehr überschritten
werden.

Die in Anhang XI festgelegten Toleranzmargen sind gemäß Artikel 21 anzuwenden.

2. Die Alarmschwellen für die Schwefeldioxid- und Stickstoffdioxidkonzentrationen in
der Luft sind in Anhang XII Abschnitt A festgelegt.

3. Die Mitgliedstaaten können Gebiete oder Ballungsräume ausweisen, in denen die
PM10-Konzentration in der Luft infolge der Aufwirbelung von Partikeln nach der
Streuung von Straßen mit Sand im Winter die Grenzwerte für PM10 überschreitet.

Die Mitgliedstaaten übermitteln der Kommission eine Liste dieser Gebiete und
Ballungsräume sowie Informationen über die dortigen Konzentrationen und Quellen
von PM10.

Bei der Übermittlung der in Artikel 25 vorgeschriebenen Informationen an die
Kommission legen die Mitgliedstaaten die erforderlichen Nachweise dafür vor, dass
die Überschreitungen auf derartige aufgewirbelte Partikel zurückzuführen sind und

angemessene Maßnahmen zur Verringerung der Konzentrationen getroffen wurden.

Drucksache 16/1814 – 32 – Deutscher Bundestag – 16. Wahlperiode

Unbeschadet Artikel 19 brauchen die Mitgliedstaaten die Pläne oder Programme
gemäß Artikel 21 für die in Unterabsatz 1 dieses Absatzes genannten Gebiete und
Ballungsräume nur insoweit zu erstellen, als Überschreitungen auf andere PM10-
Quellen als die Streuung von Straßen mit Sand im Winter zurückzuführen sind.

Artikel 14

Kritische Werte

1. Die Mitgliedstaaten sorgen dafür, dass außerhalb von Ballungsräumen oder anderen
bebauten Gebieten die in Anhang XIII festgelegten kritischen Werte eingehalten
werden.

Sind erhebliche schädliche Auswirkungen zu befürchten, können die Mitgliedstaaten
kritische Werte auch innerhalb von Ballungsräumen oder anderen bebauten Gebieten
anwenden.

2. Sind ortsfeste Messungen die einzige Informationsquelle für die Beurteilung der
Luftqualität, darf die Anzahl der Probenahmestellen nicht unter der in Anhang V
Abschnitt C festgelegten Mindestanzahl liegen. Wenn diese Informationen durch
orientierende Messungen oder Modellrechnungen ergänzt werden, kann die
Mindestanzahl der Probenahmestellen um bis zu 50 % reduziert werden, sofern die
beurteilten Konzentrationen des entsprechenden Schadstoffs im Einklang mit den in
Anhang I Abschnitt A festgelegten Datenqualitätszielen ermittelt werden können.

Artikel 15

Ziel für die Reduzierung der Exposition gegenüber PM2,5 und
Konzentrationsobergrenzen für den Schutz der menschlichen Gesundheit

1. Die Mitgliedstaaten stellen sicher, dass das Ziel für die Verringerung der Exposition
gegenüber PM2,5 gemäß Anhang XIV Abschnitt B innerhalb der in diesem Anhang
festgelegten Frist erreicht wird.

2. Der Indikator für die durchschnittliche Exposition für PM2,5 ist entsprechend
Anhang XIV Abschnitt A zu beurteilen.

3. Jeder Mitgliedstaat sorgt gemäß Anhang III dafür, dass durch die Verteilung und die
jeweilige Anzahl der Probenahmestellen, auf die sich der Indikator für die
durchschnittliche Exposition für PM2,5 stützt, ein angemessenes Bild der Exposition
der Bevölkerung erstellt wird.

Die Anzahl der Probenahmestellen darf nicht unter der gemäß Anhang V
Abschnitt B vorgesehenen Anzahl liegen.

4. Die Mitgliedstaaten stellen sicher, dass PM2,5-Konzentrationen in der Luft in ihrem
gesamten Staatsgebiet ab dem in Anhang XIV Abschnitt C festgelegten Zeitpunkt
nicht mehr die in diesem Anhang vorgegebenen Konzentrationsobergrenzen
überschreiten.
5. Die in Anhang XIV Abschnitt C festgelegten Toleranzmargen sind gemäß Artikel 21
anzuwenden.

Deutscher Bundestag – 16. Wahlperiode – 33 – Drucksache 16/1814

Artikel 16

Anforderungen in Gebieten und Ballungsräumen, in denen die
Ozonkonzentrationen die langfristigen Ziele überschreiten

1. Die Mitgliedstaaten stellen sicher, dass die in Anhang VII festgelegten Zielwerte und
langfristigen Ziele innerhalb der in diesem Anhang festgelegten Frist erreicht
werden.

2. Die Mitgliedstaaten sorgen dafür, dass in Gebieten und Ballungsräumen, in denen ein
Zielwert überschritten wird, ab dem in Anhang VII Abschnitt A.2 festgelegten
Zeitpunkt die gemäß Artikel 6 der Richtlinie 2001/81/EG erstellten Pläne oder
Programme durchgeführt werden, um die Zielwerte zu erreichen, es sei denn, dies
ist mit Maßnahmen, die in einem angemessenen Verhältnis zum angestrebten
Erfolg stehen, nicht möglich.

Müssen gemäß Artikel 21 Absatz 1 auch für andere Schadstoffe als Ozon Pläne oder
Programme ausgearbeitet und durchgeführt werden, so arbeiten die Mitgliedstaaten
gegebenenfalls für alle betreffenden Schadstoffe integrierte Pläne oder Programme
aus und führen sie durch.

3. Für Gebiete und Ballungsräume, in denen die Ozonwerte in der Luft die langfristigen
Ziele, nicht jedoch die Zielwerte überschreiten, erarbeiten die Mitgliedstaaten
kosteneffiziente Maßnahmen, um die langfristigen Ziele zu erreichen, und führen sie
durch. Diese Maßnahmen müssen zumindest mit allen in Absatz 2 genannten
Plänen und Programmen im Einklang stehen.

Artikel 17

Anforderungen in Gebieten und Ballungsräumen, in denen die
Ozonkonzentrationen die langfristigen Ziele erfüllen

In Gebieten und Ballungsräumen, in denen die Ozonkonzentrationen die langfristigen Ziele
erfüllen, halten die Mitgliedstaaten - soweit Faktoren wie der grenzüberschreitende Charakter
der Ozonbelastung und die meteorologischen Gegebenheiten dies zulassen - diese Werte unter
den langfristigen Zielen und erhalten durch Maßnahmen, die in einem angemessenen
Verhältnis zum angestrebten Erfolg stehen, die bestmögliche Luftqualität im Einklang mit
einer dauerhaften und umweltgerechten Entwicklung und ein hohes Schutzniveau für die
Umwelt und die menschliche Gesundheit.

Artikel 18

Erforderliche Maßnahmen bei Überschreitung der Informationsschwelle oder der
Alarmschwellen

Bei Überschreitung der in Anhang XII festgelegten Informationsschwelle oder einer der in
diesem Anhang festgelegten Alarmschwellen ergreifen die Mitgliedstaaten die erforderlichen

Maßnahmen, um die Öffentlichkeit über Radio, Fernsehen, Zeitungen oder das Internet zu
informieren.

Drucksache 16/1814 – 34 – Deutscher Bundestag – 16. Wahlperiode

Darüber hinaus übermitteln die Mitgliedstaaten der Kommission unverzüglich vorläufige
Informationen über die festgestellten Werte sowie über die Zeiträume, in denen die
Alarmschwelle oder die Informationsschwelle überschritten wurden.

Artikel 19

Emissionen aus natürlichen Quellen

1. Die Mitgliedstaaten können Gebiete oder Ballungsräume ausweisen, in denen die
Überschreitung von Grenzwerten oder Konzentrationsobergrenzen für einen
bestimmten Schadstoff auf natürliche Quellen zurückzuführen ist.

Sie übermitteln der Kommission eine Aufstellung aller solcher Gebiete oder
Ballungsräume mit Angaben zu den Konzentrationen und Quellen sowie Nachweisen
dafür, dass die Überschreitungen auf natürliche Quellen zurückzuführen sind.

2. Wurde die Kommission gemäß Absatz 1 über eine durch natürliche Quellen
verursachte Überschreitung unterrichtet, gilt diese Überschreitung nicht als Über-
schreitung im Sinne dieser Richtlinie.

Artikel 20

Verlängerung der Fristen für die Erfüllung der Vorschriften und Ausnahmen von der
vorgeschriebenen Anwendung bestimmter Grenzwerte

1. Können in einem bestimmten Gebiet oder Ballungsraum die Grenzwerte für
Stickstoffdioxid oder Benzol oder die Konzentrationsobergrenze für PM2,5 nicht
innerhalb der in Anhang XI oder in Anhang XIV Abschnitt C festgelegten Fristen
eingehalten werden, kann ein Mitgliedstaat diese Fristen für dieses bestimmte Gebiet
oder diesen bestimmten Ballungsraum um höchstens fünf Jahre verlängern, wenn
folgende Voraussetzungen erfüllt sind:

a) Erstellung eines Plans oder eines Programms gemäß Artikel 21 für das Gebiet
oder den Ballungsraum, für das/den die Verlängerung gelten würde, und
Übermittlung dieses Plans oder Programms an die Kommission;

b) Ausarbeitung eines Programms zur Luftreinhaltung für den Zeitraum der
Fristverlängerung, in das mindestens die in Anhang XV Abschnitt B aufge-
führten Informationen aufgenommen wurden und aus dem hervorgeht, dass die
Grenzwerte oder Konzentrationsobergrenzen vor Ablauf der neuen Frist
eingehalten werden, und Übermittlung dieses Programms an die Kommission.

2. Ist in einem bestimmten Gebiet oder Ballungsraum die Einhaltung der Grenzwerte
für Schwefeldioxid, Kohlenmonoxid, Blei und PM10 nach Maßgabe des Anhangs XI
aufgrund standortspezifischer Ausbreitungsbedingungen, ungünstiger klimatischer
Bedingungen oder grenzüberschreitender Einträge schwierig, können die Mitglied-
staaten spätestens bis zum 31. Dezember 2009 von der Verpflichtung ausgenommen

werden diese Grenzwerte einhalten zu müssen, sofern die in Absatz 1 Buchstabe a
und Buchstabe b festgelegten Bedingungen erfüllt sind.

Deutscher Bundestag – 16. Wahlperiode – 35 – Drucksache 16/1814

3. In Anwendung des Absatzes 1 beziehungsweise des Absatzes 2 stellen die
Mitgliedstaaten sicher, dass der Grenzwert oder die Konzentrationsobergrenze für
jeden Schadstoff nicht um mehr als die für jeden der betroffenen Schadstoffe in den
Anhängen XI oder XIV festgelegte maximale Toleranzmarge überschritten wird.

4. Ein Mitgliedstaat, der der Ansicht ist, dass Absatz 1 oder Absatz 2 anwendbar sind,
teilt dies der Kommission unverzüglich mit und übermittelt ihr die Pläne oder
Programme oder das Programm zur Luftreinhaltung gemäß Absatz 1 Buchstabe a
beziehungsweise Buchstabe b einschließlich aller relevanten Informationen, die die
Kommission benötigt, um festzustellen, ob die entsprechenden Voraussetzungen
erfüllt sind.

Hat die Kommission neun Monate nach Eingang dieser Mitteilung keine Einwände
erhoben, gelten die Bedingungen für die Anwendung von Absatz 1 beziehungsweise
von Absatz 2 als erfüllt.

Werden Einwände erhoben, kann die Kommission die Mitgliedstaaten auffordern,
Anpassungen vorzunehmen oder neue Pläne oder Programme oder Programme zur
Luftreinhaltung vorzulegen.

Kapitel IV
Pläne und Programme

Artikel 21

Pläne oder Programme für die Luftqualität

1. Überschreiten in bestimmten Gebieten oder Ballungsräumen die Schadstoffwerte in
der Luft einen Grenzwert, Zielwert oder eine Konzentrationsobergrenze zuzüglich
einer jeweils dafür geltenden Toleranzmarge, sorgen die Mitgliedstaaten dafür, dass
für diese Gebiete oder Ballungsräume Pläne oder Programme erstellt werden, um die
entsprechenden in den Anhängen XI und XIV festgelegten Grenzwerte, Zielwerte
oder Konzentrationsobergrenzen einzuhalten.

Diese Pläne oder Programme müssen mindestens die in Anhang XV Abschnitt A
aufgeführten Angaben umfassen und sind der Kommission unverzüglich mitzuteilen.

2. Die Mitgliedstaaten stellen möglichst die Übereinstimmung mit anderen Plänen
sicher, die aufgrund der Richtlinie 2001/80/EG, der Richtlinie 2001/81/EG oder der
Richtlinie 2002/49/EG zu erstellen sind, um die entsprechenden Umweltziele zu
erreichen.

3. Die in Absatz 1 genannten Pläne und Programme und die Programme zur
Luftreinhaltung gemäß Artikel 20 Absatz 1 Buchstabe b unterliegen nicht der

Prüfung im Rahmen der Richtlinie 2001/42/EG.

Drucksache 16/1814 – 36 – Deutscher Bundestag – 16. Wahlperiode

Artikel 22

Pläne für kurzfristige Maßnahmen

1. Besteht in einem bestimmten Gebiet oder Ballungsraum die Gefahr, dass die
Schadstoffwerte in der Luft einen oder mehrere der in den Anhängen VII, XI, XIV
und in Anhang XII Abschnitt A festgelegten Grenzwerte, Konzentrationsober-
grenzen, Zielwerte oder Alarmschwellen überschreiten, erstellen die Mitgliedstaaten
gegebenenfalls Pläne mit den Maßnahmen, die kurzfristig zu ergreifen sind, um die
Gefahr der Überschreitung zu verringern und deren Dauer zu beschränken.

Besteht die Gefahr einer Überschreitung der in Anhang XII Abschnitt B festgelegten
Alarmschwelle für Ozon, müssen die Mitgliedstaaten jedoch solche Pläne für
kurzfristige Maßnahmen nur erstellen, wenn ihrer Ansicht nach unter
Berücksichtigung der in ihrem Land gegebenen geographischen, meteorologischen
und wirtschaftlichen Bedingungen ein nennenswertes Potenzial zur Minderung des
Risikos, der Dauer oder des Ausmaßes einer solchen Überschreitung besteht. Die
Mitgliedstaaten erstellen einen solchen Plan für kurzfristige Maßnahmen unter
Berücksichtigung der Entscheidung 2004/279/EG.

2. In diesen Plänen für kurzfristige Maßnahmen gemäß Absatz 1 können im Einzelfall
Maßnahmen zur Kontrolle und, soweit erforderlich, zur Aussetzung der Tätigkeiten
vorgesehen werden, die zu einem Risiko einer Überschreitung der entsprechenden
Grenzwerte, Konzentrationsobergrenzen, Zielwerte oder Alarmschwellen beitragen,
einschließlich des Kraftfahrzeugverkehrs. Diese Pläne können auch wirksame
Maßnahmen in Bezug auf den Betrieb von Industrieanlagen oder die
Verwendung von Erzeugnissen umfassen.

3. Die Mitgliedstaaten machen der Öffentlichkeit sowie relevanten Organisationen wie
Umweltschutzorganisationen, Verbraucherverbänden, Interessenvertretungen empfind-
licher Bevölkerungsgruppen und anderen mit dem Gesundheitsschutz befassten
relevanten Stellen sowohl die Ergebnisse ihrer Untersuchungen zu Eignung und
Inhalt spezifischer Pläne für kurzfristige Maßnahmen als auch Informationen über
die Durchführung dieser Pläne zugänglich.

Artikel 23

Grenzüberschreitende Luftverschmutzung

1. Wird eine Alarmschwelle, ein Grenz- oder Zielwert oder eine Konzentrationsober-
grenze zuzüglich der dafür geltenden Toleranzmarge oder ein langfristiges Ziel
aufgrund erheblicher grenzüberschreitender Transporte von Schadstoffen oder ihrer
Vorläuferstoffe überschritten, so arbeiten die betroffenen Mitgliedstaaten zusammen
und sehen gegebenenfalls gemeinsame Maßnahmen vor, beispielsweise gemeinsame
oder koordinierte Pläne oder Programme gemäß Artikel 21, um solche Über-
schreitungen durch geeignete, angemessene Maßnahmen zu beheben.

2. Die Kommission wird aufgefordert, sich an jeder Form der Zusammenarbeit gemäß

Absatz 1 zu beteiligen. Gegebenenfalls erwägt die Kommission unter Berücksichti-
gung der gemäß Artikel 9 der Richtlinie 2001/81/EG erstellten Berichte, ob weitere

Deutscher Bundestag – 16. Wahlperiode – 37 – Drucksache 16/1814

Maßnahmen auf Gemeinschaftsebene ergriffen werden sollten, um die Emissionen
von Vorläuferstoffen, auf die die grenzüberschreitende Luftverschmutzung zurück-
zuführen ist, zu senken.

3. Die Mitgliedstaaten arbeiten, gegebenenfalls nach Artikel 22, gemeinsame Pläne für
kurzfristige Maßnahmen aus, die sich auf benachbarte Gebiete anderer
Mitgliedstaaten erstrecken, und setzen sie um. Die Mitgliedstaaten gewährleisten,
dass die benachbarten Gebiete in anderen Mitgliedstaaten, die Pläne für kurzfristige
Maßnahmen entwickelt haben, alle zweckdienlichen Informationen erhalten.

4. Bei Überschreitung der Informationsschwelle oder der Alarmschwelle in Gebieten
oder Ballungsräumen nahe den Landesgrenzen sind die zuständigen Behörden der
betroffenen benachbarten Mitgliedstaaten so schnell wie möglich zu unterrichten.
Diese Informationen sind auch der Öffentlichkeit zugänglich zu machen.

5. Bei der Ausarbeitung der Pläne und Programme gemäß den Absätzen 1 und 3 sowie
bei der Information der Öffentlichkeit gemäß Absatz 4 arbeiten die Mitgliedstaaten
gegebenenfalls weiterhin mit Drittländern, insbesondere mit den Bewerberländern,
zusammen.

Kapitel V
Informations- und Berichtspflicht

Artikel 24

Unterrichtung der Öffentlichkeit

1. Die Mitgliedstaaten stellen sicher, dass die Öffentlichkeit sowie relevante Organi-
sationen wie Umweltschutzorganisationen, Verbraucherverbände, Interessenvertre-
tungen empfindlicher Bevölkerungsgruppen und andere mit dem Gesundheitsschutz
befasste relevante Stellen angemessen und rechtzeitig über folgendes unterrichtet
werden:

a) die Luftqualität gemäß Anhang XVI,

b) Fristverlängerungen gemäß Artikel 20 Absatz 1,

c) Ausnahmen von den Verpflichtungen gemäß Artikel 20 Absatz 2,

d) die Pläne oder Programme und Programme zur Luftreinhaltung gemäß
Artikel 16 Absatz 2, Artikel 20 Absatz 1 Buchstabe b und Artikel 21.

Diese Informationen sind kostenlos über alle leicht zugänglichen Medien einschließ-
lich des Internets oder jede andere geeignete Form der Telekommunikation zur
Verfügung zu stellen und tragen den Bestimmungen der Richtlinie […] Rechnung.

Drucksache 16/1814 – 38 – Deutscher Bundestag – 16. Wahlperiode

2. Die Mitgliedstaaten veröffentlichen umfassende Jahresberichte für alle von dieser
Richtlinie betroffenen Schadstoffe.

Diese Berichte enthalten mindestens eine Zusammenfassung der Überschreitungen
von Grenzwerten, Konzentrationsobergrenzen, Zielwerten, langfristigen Ziele,
Informationsschwellen und Alarmschwellen in den relevanten Durchschnittszeit-
räumen. Anhand dieser Informationen wird eine zusammenfassende Bewertung der
Auswirkungen dieser Überschreitungen vorgenommen. Dem sind gegebenenfalls
weitere Informationen und Bewertungen in Bezug auf den Schutz der Wälder
beizufügen, sowie Informationen zu anderen Schadstoffen , deren Überwachung in
dieser Richtlinie vorgesehen ist, beispielsweise bestimmte nicht regulierte
Ozonvorläuferstoffe gemäß Anhang X Abschnitt B.

Artikel 25

Übermittlung von Informationen und Berichten

Die Mitgliedstaaten stellen sicher, dass der Kommission Informationen über die Luftqualität
übermittelt werden.

Artikel 26

Änderung und Durchführung

1. Die Kommission ändert erforderlichenfalls entsprechend dem in Artikel 27 Absatz 2
genannten Verfahren die Anhänge I bis VI, die Anhänge VIII bis X sowie
Anhang XV.

Diese Änderungen dürfen jedoch keine direkte oder indirekte Änderung bewirken in
Bezug auf

a) die in den Anhängen VII und XI bis XIV festgelegten Grenzwerte, Konzentra-
tionsobergrenzen, Vorschriften zur Reduzierung der Exposition, kritischen
Werte, Zielwerte, Informations- oder Alarmschwellen oder langfristigen Ziele
oder

b) die Fristen für die Erfüllung eines der Parameter unter Buchstabe a.

2. Die Kommission wird nach dem in Artikel 27 Absatz 2 genannten Verfahren festlegen,
welche Informationen die Mitgliedstaaten gemäß Artikel 25 zu übermitteln haben.

Weiter wird die Kommission nach dem in Artikel 27 Absatz 2 genannten Verfahren
festlegen, wie die Übermittlung solcher Daten und der Austausch von Informationen
und Daten aus Netzen und einzelnen Stationen zur Messung der Luftverschmutzung
in den Mitgliedstaaten zu vereinheitlichen sind.

3. Die Kommission erstellt Leitlinien für Vereinbarungen über die Errichtung
gemeinsamer Messstationen gemäß Artikel 6 Absatz 5.
4. Die Kommission veröffentlicht eine Anleitung zum Nachweis der Gleichwertigkeit
gemäß Anhang VI Abschnitt B.

Deutscher Bundestag – 16. Wahlperiode – 39 – Drucksache 16/1814

Kapitel VI
Ausschuss, Übergangs- und Schlussbestimmungen

Artikel 27

Ausschuss

1. Die Kommission wird von einem Ausschuss, „Ausschuss für Luftqualität“ genannt,
unterstützt, im Folgenden „Ausschuss“.

2. Wird auf diesen Absatz Bezug genommen, so gelten die Artikel 5 und 7 des
Beschlusses 1999/468/EG unter Beachtung von dessen Artikel 8.

Der Zeitraum nach Artikel 5 Absatz 6 des Beschlusses 1999/468/EG wird auf drei
Monate festgesetzt.

3. Der Ausschuss gibt sich eine Geschäftsordnung.

Artikel 28

Sanktionen

Die Mitgliedstaaten legen fest, welche Sanktionen bei einem Verstoß gegen die
innerstaatlichen Vorschriften zur Umsetzung dieser Richtlinie zu verhängen sind, und treffen
die zu deren Durchsetzung erforderlichen Maßnahmen. Die Sanktionen müssen wirksam,
verhältnismäßig und abschreckend sein. Die Mitgliedstaaten teilen der Kommission die
entsprechenden Bestimmungen spätestens an dem in Artikel 31 Absatz 1 genannten Tag mit
und melden ihr umgehend alle Änderungen dieser Bestimmungen.

Artikel 29

Aufhebung und Übergangsbestimmungen

1. Die Richtlinien 96/62/EG, 1999/30/EG, 2000/69/EG und 2002/3/EG werden zu dem
in Artikel 31 Absatz 1 genannten Zeitpunkt aufgehoben; die Verpflichtungen der
Mitgliedstaaten hinsichtlich der Fristen für die Umsetzung oder Anwendung dieser
Richtlinien bleiben hiervon unberührt.

Folgende Artikel bleiben jedoch in Kraft:

a) Artikel 5 der Richtlinie 96/62/EG bis 31. Dezember 2010;

b) Artikel 11 Absatz 1 der Richtlinie 96/62/EG und Artikel 10 Absatz 1 und
Absatz 2 der Richtlinie 2002/3/EG bis zum Inkrafttreten der in Artikel 26
Absatz 2 dieser Richtlinie genannten Durchführungsmaßnahmen;

c) Artikel 9 Absatz 3 und Absatz 4 der Richtlinie 1999/30/EG bis 31. Dezem-
ber 2009.

Drucksache 16/1814 – 40 – Deutscher Bundestag – 16. Wahlperiode

2. Verweise auf die außer Kraft gesetzten Richtlinien sind als Verweise auf diese
Richtlinie zu verstehen. Dabei ist die als Anhang XVII beigefügte Korrelations-
tabelle heranzuziehen.

3. Die Entscheidung 97/101/EG wird mit Wirkung ab dem Inkrafttreten der in Artikel 26
Absatz 2 dieser Richtlinie genannten Durchführungsmaßnahmen aufgehoben.

Artikel 30

Überprüfung

Die Kommission überprüft innerhalb von fünf Jahren nach Annahme dieser Richtlinie die
Vorschriften in Bezug auf PM2,5. Insbesondere erarbeitet die Kommission einen ausführlichen
Vorschlag zur Festlegung verbindlicher Verpflichtungen zur Reduzierung der Exposition, die
der unterschiedlichen künftigen Situation hinsichtlich der Luftqualität und dem unterschied-
lichen Reduzierungspotenzial in den Mitgliedstaaten Rechnung tragen.

Artikel 31

Umsetzung

1. Die Mitgliedstaaten setzen die erforderlichen Rechts- und Verwaltungsvorschriften
in Kraft, um dieser Richtlinie spätestens am 31. Dezember 2007 nachzukommen. Sie
teilen der Kommission unverzüglich den Wortlaut dieser Rechtsvorschriften mit und
fügen eine Entsprechungstabelle dieser Rechtsvorschriften und der vorliegenden
Richtlinie bei.

Bei Erlass dieser Vorschriften nehmen die Mitgliedstaaten in den Vorschriften selbst
oder durch einen Hinweis bei der amtlichen Veröffentlichung auf diese Richtlinie
Bezug. Die Mitgliedstaaten regeln die Einzelheiten der Bezugnahme.

2. Die Mitgliedstaaten teilen der Kommission den Wortlaut der wichtigsten innerstaat-
lichen Rechtsvorschriften mit, die sie auf dem unter diese Richtlinie fallenden Gebiet
erlassen.

Artikel 32

Diese Richtlinie tritt am Tag ihrer Veröffentlichung im Amtsblatt der Europäischen Union in
Kraft.

Artikel 33

Diese Richtlinie ist an die Mitgliedstaaten gerichtet.

Brüssel, den […]
Im Namen des Europäischen Parlaments Im Namen des Rates
Der Präsident Der Präsident
[…] […]

Deutscher Bundestag – 16. Wahlperiode – 41 – Drucksache 16/1814

ANHANG I

DATENQUALITÄTSZIELE

A. DATENQUALITÄTSZIELE FÜR DIE LUFTQUALITÄTSBEURTEILUNG

Schwefeldioxid,
Stickstoffdioxid,
Stickstoffoxide

und Kohlen-
monoxid

Benzol Partikel
(PM10/PM2,5)

und Blei

Ozon
und damit
zusammen-
hängender/s
NO und NO2

Ortsfeste Messung(1)
Unsicherheit
Mindestdatenerfassung

Mindestmessdauer:
Stadtgebiete,
Verkehrszonen,
Industriegebiete

15 %
90 %

25%
90 %

35 % (2)

90 %
90%

25%
90%

15 %
90 % im Sommer
75 % im Winter

orientierende Messungen
Unsicherheit
Mindestdatenerfassung
Mindestmessdauer

25 %
90 %
14 %(4)

30 %
90 %
14 %(3)

50%
90%
14 %(4)

30 %
90 %
10 % im Sommer

Unsicherheit der
Modellrechnungen
stündlich
8-Stunden-
Durchschnittswerte
Tagesdurchschnittswerte
Jahresdurchschnittswerte

50%
-

50%
30%

-
50%

-
-

noch nicht
festgelegt
50%

50%
50%

Objektive Schätzung
Unsicherheit 75 % 100 % 100 % 75 %

(1) Die Mitgliedstaaten können bei Benzol und Partikeln Stichprobenmessungen anstelle von
kontinuierlichen Messungen durchführen, wenn sie der Kommission gegenüber nachweisen
können, dass die Unsicherheit, einschließlich der Unsicherheit aufgrund der Zufallsproben,
das Qualitätsziel von 25 % erreicht und die Messdauer über der Mindestmessdauer für
orientierende Messungen liegt. Stichprobenmessungen sind gleichmäßig über das Jahr zu
verteilen, um Verzerrungen der Ergebnisse zu vermeiden. Die Unsicherheit bei Stichproben-
messungen kann anhand des Verfahrens ermittelt werden, das in der ISO-Norm „Luftbe-
schaffenheit - Ermittlung der Unsicherheit von zeitlichen Mittelwerten von Luftbe-
schaffenheitsmessungen“ niedergelegt ist. Werden Stichprobenmessungen zur Beurteilung
der Anzahl der Überschreitungen (N[Schätzung]) des Tagesgrenzwerts für PM10 verwendet
(N = number), ist folgende Korrektur vorzunehmen: N[Schätzung] = N[Messung] x 365 Tage/Anzahl
der Tage, an denen Messungen stattgefunden haben.

(2) gleichmäßig über das Jahr verteilt, damit die unterschiedlichen klimatischen und
verkehrsabhängigen Bedingungen berücksichtigt werden

(3) eine Tagesmessung (Stichprobe) pro Woche, gleichmäßig verteilt über das Jahr, oder
8 Wochen gleichmäßig verteilt über das Jahr
(4) eine Stichprobe pro Woche, gleichmäßig verteilt über das Jahr, oder 8 Wochen gleichmäßig
verteilt über das Jahr

Drucksache 16/1814 – 42 – Deutscher Bundestag – 16. Wahlperiode

Die Unsicherheit (bei einem Zuverlässigkeitsgrad von 95 %) der Messmethoden wird
in Einklang mit den Grundsätzen des CEN-Leitfadens für Zuverlässigkeits-
managemennt („Guide to the Expression of Uncertainty in Measurement“ –
ENV 13005-1999), der Methodik nach ISO 5725:1994 sowie der Anleitungen im
CEN-Bericht über Unsicherheitsschätzungen („Air Quality – Approach to Uncertainty
Estimation for Ambient Air Reference Measurement Methods“ – CR 14377:2002E)
beurteilt. Die in der obigen Tabelle angegebenen Prozentsätze für die Unsicherheit
gelten für Einzelmessungen, gemittelt über den betreffenden Zeitraum in Bezug auf
den Grenzwert, bei einem Zuverlässigkeitsgrad von 95 %. Die Unsicherheit für
ortsfeste Messungen gilt für den Bereich des jeweiligen Grenzwertes.

Die Unsicherheit von Modellrechnungen und objektiven Schätzungen ist als die
maximale Abweichung der gemessenen und berechneten Konzentrationswerte im
jeweiligen Zeitraum in Bezug auf den Grenzwert ohne Berücksichtigung des
Zeitpunkts der Abweichungen definiert.

Die Anforderungen für die Mindestdatenerfassung und die Mindestmessdauer
erstrecken sich nicht auf Datenverlust aufgrund der regelmäßigen Kalibrierung oder
der üblichen Wartung der Messgeräte.

B. ERGEBNISSE DER BEURTEILUNG DER LUFTQUALITÄT

Die folgenden Informationen sind für Gebiete oder Ballungsräume zusammenzu-
stellen, in denen anstelle von Messungen andere Datenquellen als ergänzende
Informationen zu Messdaten oder als alleiniges Mittel zur Luftqualitätsbeurteilung
genutzt werden:

– Beschreibung der vorgenommenen Beurteilung,

– eingesetzte spezifische Methoden mit Verweisen auf Beschreibungen der
Methode,

– Quellen von Daten und Informationen,

– Beschreibung der Ergebnisse, einschließlich der Unsicherheiten, insbesondere der
Ausdehnung von Flächen oder gegebenenfalls die Länge des Straßenabschnitts
innerhalb des Gebiets oder Ballungsraums, in dem die Schadstoffkonzentrationen
einen Grenzwert, einen Konzentrationshöchstwert, einen Zielwert oder ein
langfristiges Ziel zuzüglich etwaiger Toleranzmargen übersteigen, sowie aller
geographischen Bereiche, in denen die Konzentrationen die obere oder die untere
Beurteilungsschwelle überschreiten,

– Bevölkerung, die potenziell einer Konzentration oberhalb eines Grenzwertes
ausgesetzt ist.

Deutscher Bundestag – 16. Wahlperiode – 43 – Drucksache 16/1814

C. QUALITÄTSSICHERUNG BEI DER BEURTEILUNG DER LUFTQUALITÄT – VALIDIERUNG
DER DATEN

1. Um die Genauigkeit der Messungen und die Einhaltung der Datenqualitätsziele
gemäß Abschnitt A dieses Anhangs sicherzustellen, müssen die gemäß Artikel 3
benannten zuständigen Behörden und Stellen sicherstellen, dass:

– alle Messungen, die im Zusammenhang mit der Beurteilung der Luftqualität
gemäß Artikel 4 vorgenommen werden, rückverfolgt werden können;

– die Einrichtungen, die Netze und Einzelstationen betreiben, über ein Qualitäts-
sicherungs- und Qualitätskontrollsystem verfügen, das eine regelmäßige Wartung
zur Gewährleistung der Präzision der Messgeräte vorsieht,

– für die Datenerfassung und Berichterstattung ein Qualitätssicherungs- und
Qualitätskontrollverfahren eingeführt wird, und dass die mit dieser Aufgabe
betrauten Einrichtungen aktiv an den entsprechenden gemeinschaftsweiten
Qualitätssicherungsprogrammen teilnehmen;

– die von den gemäß Artikel 3 benannten zuständigen Behörden und Stellen
beauftragten nationalen Laboratorien, die an gemeinschaftsweitenweiten
Ringvergleichen zu den mit dieser Richtlinie regulierten Schadstoffen teilnehmen,
gemäß der Norm EN/ISO 17025 für die bei den genannten Ringvergleichen
angewendeten Methoden zugelassen sind bzw. das diesbezügliche Zulassungs-
verfahren eingeleitet ist. Diese Laboratorien müssen an der Koordinierung der
gemeinschaftlichen, von der Kommission durchgeführten Qualitätssicherungs-
programme in den Hoheitsgebieten der Mitgliedstaaten beteiligt sein und
koordinieren außerdem auf einzelstaatlicher Ebene die Anwendung von
Referenzmethoden sowie den Nachweis der Gleichwertigkeit anderer Methoden
als Referenzmethoden.

2. Alle übermittelten Daten gelten als gültig.

Drucksache 16/1814 – 44 – Deutscher Bundestag – 16. Wahlperiode

ANHANG II

FESTLEGUNG DER ANFORDERUNGEN FÜR DIE BEURTEILUNG DER
KONZENTRATION VON SCHWEFELDIOXID, STICKSTOFFDIOXID UND

STICKSTOFFOXIDEN PARTIKELN (PM10 und PM2,5), BLEI, KOHLENMONOXID
UND BENZOL IN DER LUFT INNERHALB EINES GEBIETS ODER

BALLUNGSRAUMS

A. OBERE UND UNTERE BEURTEILUNGSSCHWELLEN

Es gelten die folgenden oberen und unteren Beurteilungsschwellen:

a) Schwefeldioxid
Schutz der menschlichen

Gesundheit
Schutz der Vegetation

Obere Beurteilungsschwelle

60 % des 24-Stunden-Grenzwerts
(75 μg/m3 dürfen nicht öfter als
dreimal im Kalenderjahr überschritten
werden)

60 % des Wintergrenzwerts (12 μg/m3)

Untere
Beurteilungsschwelle

40 % des 24-Stunden-Grenzwerts
(50 μg/m3 dürfen nicht öfter als
dreimal im Kalenderjahr überschritten
werden)

40 % des Wintergrenzwerts (8 μg/m3)

b) Stickstoffdioxid und Stickstoffoxide

1-Stunden-Grenzwert für
den Schutz der

menschlichen Gesundheit
(NO2)

Jahresgrenzwert für den
Schutz der menschlichen

Gesundheit (NO2)

Jahresgrenzwert für den
Schutz der Vegetation

(NO2)

Obere
Beurteilungs-
schwelle

70 % des Grenzwerts
(140 μg/m3 dürfen nicht
öfter als 18-mal im
Kalenderjahr überschritten
werden)

80 % des Grenzwerts
(32 μg/m3)

80 % des Grenzwerts
(24 μg/m3)

Untere
Beurteilungs-
schwelle

50 % des Grenzwerts
(100 μg/m3 dürfen nicht
öfter als 18-mal im
Kalenderjahr überschritten
werden)

65 % des Grenzwerts
(26 μg/m3)

65 % des Grenzwerts
(19,5 μg/m3)

Deutscher Bundestag – 16. Wahlperiode – 45 – Drucksache 16/1814

c) Partikel (PM10 /PM2,5)

24-Stunden-Mittelwert Jahresmittel-
wert
PM10

Jahresmittel-
wert
PM2,5

Obere Beurteilungsschwelle 30 μg/m3 dürfen nicht öfter als
siebenmal im Kalenderjahr überschritten
werden

14 μg/m3 10 μg/m3

Untere Beurteilungsschwelle 20 μg/m3 dürfen nicht öfter als
siebenmal im Kalenderjahr überschritten
werden

10 μg/m3 7 μg/m3

d) Blei

Jahresmittelwert

Obere Beurteilungsschwelle 70 % des Grenzwerts (0,35 μg/m3)

Untere Beurteilungsschwelle 50 % des Grenzwerts (0,25 μg/m3)

e) Benzol

Jahresmittelwert

Obere Beurteilungsschwelle 70 % des Grenzwerts (3,5 μg/m3)

Untere Beurteilungsschwelle 40 % des Grenzwerts (2 μg/m3)

f) Kohlenmonoxid

Acht-Stunden-Mittelwert

Obere Beurteilungsschwelle 70 % des Grenzwerts (7 mg/m3)

Untere Beurteilungsschwelle 50 % des Grenzwerts (5 mg/m3)

B. ÜBERSCHREITUNG DER OBEREN UND UNTEREN BEURTEILUNGSSCHWELLEN

Die Überschreitung der oberen und unteren Beurteilungsschwellen ist auf der Grundlage der
Konzentrationen während der vorangegangenen fünf Jahre zu ermitteln, sofern entsprechende
Daten vorliegen. Eine Beurteilungsschwelle gilt als überschritten, wenn sie in den
vorangegangenen fünf Jahren in mindestens drei einzelnen Jahren überschritten worden ist.

Liegen Daten für die gesamten fünf vorhergehenden Jahre nicht vor, können die
Mitgliedstaaten die Ergebnisse von kurzzeitigen Messkampagnen während derjenigen

Jahreszeit und an denjenigen Stellen, die für die höchsten Schadstoffwerte typisch sein
dürften, mit Informationen aus Emissionskatastern und Modellen verbinden, um die
Überschreitungen der oberen und unteren Beurteilungsschwellen zu ermitteln.

Drucksache 16/1814 – 46 – Deutscher Bundestag – 16. Wahlperiode

ANHANG III

LAGE DER PROBENAHMESTELLEN FÜR MESSUNGEN VON
SCHWEFELDIOXID, STICKSTOFFDIOXID UND STICKSTOFFOXIDEN,
PARTIKELN (PM10 und PM2,5), BLEI, KOHLENMONOXID UND BENZOL

IN DER LUFT

Für ortsfeste Messstationen gelten folgende Kriterien:

A. STANDORTWAHL AUF MAKROEBENE

a) Schutz der menschlichen Gesundheit

1. Probenahmestellen, an denen Messungen zum Schutz der menschlichen Gesundheit
vorgenommen werden, sind so auszuwählen, dass folgende Daten gewonnen werden:

– Daten über Bereiche innerhalb von Gebieten und Ballungsräumen, in denen die
höchsten Konzentrationen auftreten, denen die Bevölkerung wahrscheinlich direkt
oder indirekt über einen Zeitraum ausgesetzt sein wird, der im Vergleich zum
Mittelungszeitraum der betreffenden Grenzwerte signifikant ist;

– Daten zu Konzentrationen in anderen Bereichen innerhalb von Gebieten und
Ballungsräumen, die für die Exposition der Bevölkerung allgemein repräsentativ
sind.

2. Der Standort von Probenahmestellen sollte im Allgemeinen so gewählt werden, dass
die Messung sehr kleinräumiger Umweltzustände in ihrer unmittelbaren Nähe
vermieden wird, was bedeutet, dass der Standort der Probenahmestelle so zu wählen
ist, dass die Luftproben – soweit möglich – für die Luftqualität eines Gebiets von
nicht weniger als 200 m2 bei Probenahmestellen für den Verkehr und nicht weniger
als 250 m x 250 m bei Probenahmestellen für Industriegebiete repräsentativ ist.

3. Messstationen für städtische Hintergrundquellen müssen so gelegen sein, dass die
gemessene Verschmutzung sämtliche Quellen aus der Windrichtung erfasst. Für die
gemessene Verschmutzung sollte nicht eine Quelle vorherrschend sein, es sei denn,
dies ist für ein größeres städtisches Gebiet typisch. Die Probenahmestellen müssen
grundsätzlich für ein Gebiet von mehreren Quadratkilometern repräsentativ sein.

4. Soll die Hintergrundverschmutzung beurteilt werden, dürfen die Messungen der
Probenahmestelle nicht durch nahe (d. h. näher als einige Kilometer) liegende
Ballungsräume oder Industriegebiete beeinflusst sein.

5. Soll die Verschmutzung durch industrielle Quellen beurteilt werden, muss mindestens
eine Probenahmestelle unterhalb der Quelle in Windrichtung im nächstgelegenen
Wohngebiet liegen. Sind die Hintergrundkonzentrationen nicht bekannt, ist eine
zusätzliche Probenahmestelle zur Beurteilung der Konzentrationen aus der
Hauptwindrichtung einzurichten.

6. Probenahmestellen müssen möglichst auch für ähnliche Standorte repräsentativ sein,
die nicht in ihrer unmittelbaren Nähe gelegen sind.
7. Sofern dies aus Gründen des Gesundheitsschutzes erforderlich ist, sind
Probenahmestellen auf Inseln einzurichten.

Deutscher Bundestag – 16. Wahlperiode – 47 – Drucksache 16/1814

b) Schutz der Vegetation

Die Probenahmestellen, an denen Messungen zum Schutz der Vegetation
vorgenommen werden, sollten mehr als 20 km von Ballungsräumen bzw. mehr als
5 km von anderen bebauten Gebieten, Industrieanlagen oder Straßen entfernt gelegen
sein, was bedeutet, dass der Standort der Probenahmestelle so zu wählen ist, dass die
Luftproben für die Luftqualität eines Gebiets von mindestens 1 000 km2 repräsentativ
sind. Die Mitgliedstaaten können aufgrund der geographischen Gegebenheiten
vorsehen, dass eine Probenahmestelle in geringerer Entfernung gelegen oder für die
Luftqualität in einem kleineren umgebenden Bereich repräsentativ ist.

Es ist zu berücksichtigen, dass die Luftqualität auf Inseln beurteilt werden muss.

B. UNMITTELBARE UMGEBUNG

Soweit möglich ist Folgendes zu berücksichtigen:

– Der Luftstrom um den Messeinlass darf in einem Umkreis von mindestens 270°
nicht beeinträchtigt werden, und es dürfen keine Hindernisse vorhanden sein, die
den Luftstrom in der Nähe der Probenahmeeinrichtung beeinflussen, d. h.
Gebäude, Balkone, Bäume und andere Hindernisse müssen normalerweise um
mindestens die doppelte Höhe, um die sie die Probenahmeeinrichtung überragen,
entfernt sein. Probenahmestellen für die Luftqualität an der Baufluchtlinie müssen
mindestens 0,5 m vom nächsten Gebäude entfernt sein.

– Im Allgemeinen muss sich der Messeinlass in einer Höhe zwischen 1,5 m
(Atemzone) und 4 m über dem Boden befinden. Eine höhere Lage des Einlasses
(bis zu 8 m) kann unter Umständen angezeigt sein. Ein höher gelegener Einlass
kann auch angezeigt sein, wenn die Messstation für ein größeres Gebiet
repräsentativ ist.

– Der Messeinlass darf nicht in nächster Nähe von Quellen angebracht werden, um
die unmittelbare Einleitung von Emissionen, die nicht mit der Umgebungsluft
vermischt sind, zu vermeiden.

– Die Abluftleitung der Probenahmestelle ist so zu legen, dass ein Wiedereintritt der
Abluft in den Messeinlass vermieden wird.

– Standort von Probenahmestellen in verkehrsnahen Zonen:

a) Bei allen Schadstoffen müssen die Probenahmestellen mindestens 25 m
vom Rand verkehrsreicherer Kreuzungen und mindestens 4 m von der
Mitte der nächstgelegenen Fahrspur entfernt sein.

b) Für Stickstoffdioxid und Kohlenmonoxid sollte der Messeinlass
höchstens 5 m vom Fahrbahnrand entfernt sein.

c) Für Partikel, Blei und Benzol sollte der Messeinlass so gelegen sein, dass

er für die Luftqualität nahe der Baufluchtlinie repräsentativ ist, jedoch
höchstens 10 m vom Fahrbahnrand entfernt.

Drucksache 16/1814 – 48 – Deutscher Bundestag – 16. Wahlperiode

Die folgenden Faktoren können ebenfalls berücksichtigt werden:

– Störquellen,

– Sicherheit,

– Zugänglichkeit,

– Stromversorgung und Telefonleitungen,

– Sichtbarkeit der Messstation in der Umgebung,

– Sicherheit der Öffentlichkeit und des Betriebspersonals,

– Vorteile einer Zusammenlegung der Probenahmestellen für verschiedene Schad-
stoffe,

– bebauungsplanerische Anforderungen.

C. DOKUMENTATION UND ÜBERPRÜFUNG DER STANDORTWAHL

Die Verfahren für die Standortwahl sind in der Einstufungsphase vollständig zu
dokumentieren, z. B. mit Fotografien der Umgebung in den Haupthimmelsrichtungen
und einer detaillierten Karte. Die Standortwahl ist regelmäßig zu überprüfen und
jeweils erneut zu dokumentieren, damit sichergestellt ist, dass die Kriterien für die
Wahl weiterhin Gültigkeit haben.

Deutscher Bundestag – 16. Wahlperiode – 49 – Drucksache 16/1814

ANHANG IV

MESSUNGEN AN MESSSTATIONEN FÜR HINTERGRUNDQUELLEN
(KONZENTRATIONSUNABHÄNGIG)

A. ZIELE

Mit diesen Messungen soll vor allem gewährleistet werden, dass ausreichende Informationen
über Hintergrundwerte zur Verfügung stehen. Diese Informationen sind unerlässlich, um die
höheren Werte in stärker schadstoffbelasteten Gebieten (Stadtgebiete, Industriegebiete,
Verkehrszonen) sowie den möglichen Anteil des Langstreckentransports von Schadstoffen
beurteilen zu können und um die Analyse für die Quellenzuordnung zu unterstützen. Die
Informationen sind ferner unerlässlich für die Untersuchung einzelner Schadstoffe (z. B
Partikel). Außerdem sind die Hintergrundwerte aufgrund des verstärkten Einsatzes von
Modellen - auch für städtische Gebiete - von großer Bedeutung.

B. STOFFE

Die Messungen von PM2,5 müssen zur Charakterisierung der chemischen Zusammensetzung
mindestens die Massenkonzentration sowie geeignete Verbindungen umfassen. Zumindest die
nachstehenden chemischen Spezies sind zu berücksichtigen:

SO4
2-

Na+ NH4
+ Ca2+ elementarer Kohlenstoff (EC)

NO3
- K+ Cl- Mg2+ organischer Kohlenstoff (OC)

C. STANDORTKRITERIEN

Die Messungen sollten - im Einklang mit Anhang III A, B, und C - vor allem in ländlichen
Gebieten vorgenommen werden.

Drucksache 16/1814 – 50 – Deutscher Bundestag – 16. Wahlperiode

ANHANG V

KRITERIEN FÜR DIE FESTLEGUNG DER MINDESTZAHL DER
PROBENAHMESTELLEN FÜR ORTSFESTE MESSUNGEN VON

SCHWEFELDIOXID (SO2), STICKSTOFFDIOXID (NO2) UND
STICKSTOFFOXIDEN, PARTIKELN (PM10, PM2,5), BLEI, KOHLENMONOXID

UND BENZOL IN DER LUFT

A. MINDESTZAHL DER PROBENAHMESTELLEN FÜR ORTSFESTE MESSUNGEN ZUR
BEURTEILUNG DER EINHALTUNG VON GRENZWERTEN ODER KONZENTRATIONS-
OBERGRENZEN FÜR DEN SCHUTZ DER MENSCHLICHEN GESUNDHEIT UND VON
ALARMSCHWELLEN IN GEBIETEN UND BALLUNGSRÄUMEN, IN DENEN ORTSFESTE
MESSUNGEN DIE EINZIGE INFORMATIONSQUELLE DARSTELLEN

a) Diffuse Quellen

Bevölkerung des Ballungsraums
oder Gebiets

(Tausend)

Falls die Konzentration die obere
Beurteilungsschwelle überschreitet

Falls die maximale Konzentration
zwischen der oberen und der

unteren Beurteilungsschwelle liegt

0-249 1 1

250-499 2 1

500-749 2 1

750-999 3 1

1 000-1 499 4 2

1 500-1 999 5 2

2 000-2 749 6 3

2 750-3 749 7 3

3 750-4 749 8 4

4 750-5 999 9 4

• 6 000 10 5

(1) For NO2, Partikel, Kohlenmonoxid und Benzol: einschließlich mindestens einer Messstation für
städtische Hintergrundquellen und einer Messstation für den Verkehr, sofern sich dadurch die
Anzahl der Probenahmestellen nicht erhöht. Die Gesamtzahl der Messstationen für städtische
Hintergrundquellen und der Messstationen für den Verkehr in einem Mitgliedstaat darf nicht um mehr
als den Faktor 2 differieren.

Deutscher Bundestag – 16. Wahlperiode – 51 – Drucksache 16/1814

b) Punktquellen

Zur Beurteilung der Luftverschmutzung in der Nähe von Punktquellen ist die Zahl der
Probenahmestellen für ortsfeste Messungen unter Berücksichtigung der Emissionsdichte, der
wahrscheinlichen Verteilung der Luftschadstoffe und der möglichen Exposition der
Bevölkerung zu berechnen.

B. MINDESTZAHL DER PROBENAHMESTELLEN FÜR ORTSFESTE MESSUNGEN ZUR
BEURTEILUNG DER EINHALTUNG DER VORGABEN FÜR DIE REDUZIERUNG DER
PM2,5-EXPOSITION ZUM SCHUTZ DER MENSCHLICHEN GESUNDHEIT

Für diesen Zweck ist eine Probenahmestelle pro Million Einwohner für Ballungs-
räume und weitere Konurbationen mit mehr als 100 000 Einwohnern vorzusehen.
Diese Probenahmestellen können identisch sein mit den Probenahmestellen unter A.

C. MINDESTZAHL DER PROBENAHMESTELLEN FÜR ORTSFESTE MESSUNGEN ZUR
BEURTEILUNG DER EINHALTUNG DER VORGABEN FÜR KRITISCHE WERTE ZUM
SCHUTZ DER VEGETATION IN ANDEREN GEBIETEN ALS BALLUNGSRÄUMEN

Falls die maximale Konzentration die obere
Beurteilungsschwelle überschreitet

Falls die maximale Konzentration zwischen der
oberen und der unteren Beurteilungsschwelle

liegt

1 Station je 20 000 km2 1 Station je 40 000 km2

Im Falle von Inselgebieten sollte die Zahl der Probenahmestellen unter
Berücksichtigung der wahrscheinlichen Verteilung der Luftschadstoffe und der
möglichen Exposition der Vegetation berechnet werden.

Drucksache 16/1814 – 52 – Deutscher Bundestag – 16. Wahlperiode

ANHANG VI

REFERENZMETHODEN FÜR DIE BEURTEILUNG DER KONZENTRATION VON
SCHWEFELDIOXID, STICKSTOFFDIOXID UND STICKSTOFFOXIDEN,

PARTIKELN (PM10 und PM2,5), BLEI, KOHLENMONOXID, BENZOL UND OZON

A. REFERENZMESSMETHODEN

1. Referenzmethode zur Messung der Schwefeldioxidkonzentration

Als Referenzmethode zur Messung der Schwefeldioxidkonzentration gilt die in
EN 14212:2005 „Luftqualität - Messverfahren zur Bestimmung der Konzentration
von Schwefeldioxid mit Ultraviolett-Fluoreszenz“ beschriebene Methode.

2. Referenzmethode zur Messung der Konzentration von Stickstoffdioxid und
Stickstoffoxiden

Als Referenzmethode zur Messung von Stickstoffdioxid und Stickstoffoxiden gilt die
in EN 14211:2005 „Luftqualität - Messverfahren zur Bestimmung der Konzentration
von Stickstoffdioxid und Stickstoffmonoxid mit Chemilumineszenz“ beschriebene
Methode.

3. Referenzmethode für die Probenahme und Messung der Konzentration von Blei

Als Referenzmethode zur Probenahme von Blei gilt die in Teil A Punkt 4 dieses
Anhangs beschriebene Methode. Als Referenzmethode zur Messung der Bleikonzen-
tration gilt die in EN 14902:2005 „Luftbeschaffenheit - Standardisiertes Verfahren
zur Bestimmung von Pb/Cd/As/Ni in der Außenluft“ beschriebene Methode.

4. Referenzmethode für die Probenahme und Messung der Konzentration von
PM12

Als Referenzmethode für die Probenahme und Messung der Konzentration von PM12
gilt die in EN 12341:1999 „Luftbeschaffenheit - Ermittlung der PM10-Fraktion von
Schwebstaub - Referenzmethode und Feldprüfverfahren zum Nachweis der Gleich-
wertigkeit von Messverfahren und Referenzmessmethode“ beschriebene Methode.

5. Referenzmethode für die Probenahme und Messung der Konzentration von
PM2,5

Als Referenzmethode für die Probenahme und Messung der Konzentration von PM2,5
gilt die in EN 14907:2005 „Luftbeschaffenheit - Gravimetrische Referenzmess-
methode für die Bestimmung der PM2,5-Massenfraktion des Schwebstaubes“
beschriebene Methode.

6. Referenzmethode für die Probenahme und Messung der Konzentration von
Benzol
Als Referenzmethode für die Messung der Benzolkonzentration gilt die in
EN 14662:2005 (Teile 1, 2 und 3) „Luftbeschaffenheit - Standardverfahren zur
Bestimmung von Benzolkonzentrationen“ beschriebene Methode.

Deutscher Bundestag – 16. Wahlperiode – 53 – Drucksache 16/1814

7. Referenzmethode für die Messung der Kohlenmonoxidkonzentration

Als Referenzmethode für die Messung der Kohlenmonoxidkonzentration gilt die in
EN 14626:2005 „Luftqualität - Messverfahren zur Bestimmung der Konzentration
von Kohlenmonoxid mit nicht-dispersiver Infrarot-Photometrie“ beschriebene
Methode.

8. Referenzmethoden für die Messung der Ozonkonzentration

Als Referenzmethode für die Messung der Ozonkonzentration gilt die in
EN 14625:2005 „Luftqualität - Messverfahren zur Bestimmung der Konzentration
von Ozon mit Ultraviolett-Photometrie“ beschriebene Methode.

B. NACHWEIS DER GLEICHWERTIGKEIT

1. Die Mitgliedstaaten können auch andere Methoden anwenden, wenn der betreffende
Mitgliedstaat nachweisen kann, dass damit gleichwertige Ergebnisse wie mit den
unter Abschnitt A genannten Methoden erzielt werden, oder - bei Partikeln - eine
andere Methode, wenn der betreffende Mitgliedstaat nachweisen kann, dass diese
einen konstanten Bezug zur Referenzmethode aufweist. In diesem Fall müssen die
mit dieser Methode erzielten Ergebnisse korrigiert werden, damit diese den
Ergebnissen gleichwertig sind, die bei der Anwendung der Referenzmethode erzielt
worden wären.

2. Die Kommission kann von den Mitgliedstaaten die Erstellung und Übermittlung
eines Berichts über den Nachweis der Gleichwertigkeit gemäß Absatz 1 verlangen.

3. Bei der Beurteilung, ob der Bericht gemäß Absatz 2 akzeptabel ist, stützt sich die
Kommission auf ihre (noch zu veröffentlichenden) Leitlinien für den Nachweis der
Gleichwertigkeit. Haben die Mitgliedstaaten vorläufige Faktoren zur ungefähren
Berechnung der Gleichwertigkeit verwendet, sind diese auf der Grundlage der
Kommissionsleitlinien zu bestätigen und/oder anzupassen.

4. Die Mitgliedstaaten sollten die Korrekturen gegebenenfalls auch rückwirkend an
Messdaten der Vergangenheit vornehmen, damit die Daten leichter vergleichbar sind.

C. NORMUNG

Beim Volumen gasförmiger Schadstoffe ist als Normzustand eine Temperatur von
293 K und ein atmosphärischer Druck von 101,3 kPa zugrunde zu legen. Bei
Partikeln und in Partikeln zu analysierenden Stoffen (z. B. Blei) werden für die Angabe
des Probenvolumens die Umgebungsbedingungen zugrunde gelegt.

Drucksache 16/1814 – 54 – Deutscher Bundestag – 16. Wahlperiode

ANHANG VII

ZIELWERTE UND LANGFRISTIGE ZIELE

A. ZIELWERTE UND LANGFRISTIGE ZIELE FÜR OZON

1. Begriffsbestimmungen und Kriterien

a) Begriffsbestimmungen

AOT40 (ausgedrückt in (μg/m³)•Stunden) bedeutet die Summe der Differenzen zwi-
schen den Konzentrationen über 80 μg/m³ (= 40 ppb) als 1-Stunden-Mittelwert und
80 μg/m³ während einer gegebenen Zeitspanne unter ausschließlicher Verwendung der
1-Stunden-Mittelwerte zwischen 8 Uhr morgens und 20 Uhr abends MEZ an jedem
Tag1.

b) Kriterien

Bei der Aggregation der Daten und der Berechnung der statistischen Parameter sind
zur Prüfung der Gültigkeit folgende Kriterien anzuwenden:

Parameter Erforderlicher Anteil gültiger Daten

1-Stunden-Mittelwerte 75 % (d. h. 45 Minuten)

8-Stunden-Mittelwerte 75 % der Werte (d. h. 6 Stunden)

Höchster 8-Stunden-Mittelwert pro Tag aus
stündlich gleitenden 8-Stunden-Mittelwerten

75 % der stündlich gleitenden 8-Stunden-Mittelwerte
(d. h. 18 8-Stunden-Mittelwerte pro Tag)

AOT40 90 % der 1-Stunden-Mittelwerte während des zur Berechnung
des AOT40-Wertes festgelegten Zeitraums(a)

Jahresmittelwert
jeweils getrennt: 90 % der 1-Stunden-Mittelwerte während des
Sommers (April bis September) und 75 % während des Winters
(Januar bis März, Oktober bis Dezember)

Anzahl Überschreitungen und Höchstwerte je
Monat

90 % der höchsten 8-Stunden-Mittelwerte der Tage (27 verfüg-
bare Tageswerte je Monat)

90 % der 1-Stunden-Mittelwerte zwischen 8.00 und 20.00 Uhr MEZ

Anzahl Überschreitungen und Höchstwerte
pro Jahr

5 von 6 Monaten während des Sommerhalbjahres (April
bis September)

(a) Liegen nicht alle möglichen Messdaten vor, so werden die AOT40-Werte anhand des folgenden
Faktors berechnet:

AOT40Schätzwert = AOT40Messwert x
mögliche Gesamtstundenzahl*

Zahl der gemessenen Stundenwerte

* Stundenzahl innerhalb der Zeitspanne der AOT40-Definition (d. h. 8.00 bis 20.00 Uhr MEZ vom
1. Mai bis zum 31. Juli jedes Jahres (zum Schutz der Vegetation) und vom 1. April bis zum
30. September jedes Jahres (zum Schutz der Wälder))
1 bzw. entsprechende Uhrzeit in Regionen in äußerster Randlage.

Deutscher Bundestag – 16. Wahlperiode – 55 – Drucksache 16/1814

2. Zielwerte
Ziel Mittelungs-

zeitraum
Zielwert Frist für die

Einhaltung des
Zielwertes

Schutz der menschlichen
Gesundheit

höchster
8-Stunden-
Mittelwert pro
Tag

120 μg/m3 dürfen an höchstens
25 Tagen im Kalenderjahr
überschritten werden, gemittelt über
drei Jahre(b)

2010

Schutz der Vegetation Mai bis Juli AOT40 (berechnet anhand von
1-Stunden-Mittelwerten)

18 000 μg/m3•h, gemittelt über
fünf Jahre(b)

2010

(b) Können die drei- bzw. fünfjährigen Durchschnittswerte nicht anhand vollständiger und
aufeinander folgender Jahresdaten ermittelt werden, sind mindestens die folgenden jährlichen
Daten zur Überprüfung der Einhaltung der Zielwerte vorgeschrieben:

– Zielwert zum Schutz der menschlichen Gesundheit: gültige Daten für ein Jahr,

– Zielwert zum Schutz der Vegetation: gültige Daten für drei Jahre.

3. Langfristige Ziele

Ziel Mittelungszeitraum Zielwert Frist für die
Erreichung des

langfristigen
Ziels

Schutz der menschlichen
Gesundheit

höchster 8-Stunden-
Mittelwert pro Tag(a)

innerhalb eines
Kalenderjahres

120 μg/m3 -

Schutz der Vegetation Mai bis Juli

AOT40 (berechnet anhand
von 1-Stunden-Mittel-
werten)

6 000 μg/m3•h

-

Drucksache 16/1814 – 56 – Deutscher Bundestag – 16. Wahlperiode

ANHANG VIII

KRITERIEN ZUR EINSTUFUNG VON PROBENAHMESTELLEN FÜR DIE
BEURTEILUNG DER OZONKONZENTRATIONEN UND ZUR BESTIMMUNG

IHRER STANDORTE

Für ortsfeste Messstationen gelten folgende Kriterien:

A. STANDORTWAHL AUF MAKROEBENE
Art der
Station

Ziele der Messung Repräsentations
grad(a)

Kriterien für die Standortwahl (Makroebene)

städtisch Schutz der menschlichen
Gesundheit:
Beurteilung der
Ozonexposition der städtischen
Bevölkerung (bei relativ hoher
Bevölkerungsdichte und
Ozonkonzentration, die
repräsentativ für die Exposition
der Bevölkerung allgemein
sind)

einige km2 Außerhalb des Einflussbereichs örtlicher
Emissionsquellen wie Verkehr, Tankstellen usw.;
Standorte mit guter Durchmischung der
Umgebungsluft; Standorte wie Wohn- und
Geschäftsviertel in Städten, Grünanlagen (nicht
in unmittelbarer Nähe von Bäumen), große
Straßen oder Plätze mit wenig oder keinem
Verkehr, für Schulen, Sportanlagen oder
Freizeiteinrichtungen charakteristische offene
Flächen.

vorstädtisch Schutz der menschlichen
Gesundheit und der
Vegetation:
Beurteilung der Exposition der
Bevölkerung und Vegetation in
vorstädtischen Gebieten von
Ballungsräumen mit den
höchsten Ozonwerten, denen
Bevölkerung und Vegetation
unmittelbar oder mittelbar
ausgesetzt sein dürften

einige
Dutzend km2

In gewissem Abstand von den Gebieten mit den
höchsten Emissionen und auf deren Leeseite,
bezogen auf die Hauptwindrichtungen, die bei
für die Ozonbildung günstigen Bedingungen
vorherrschen;
Orte, an denen die Bevölkerung, empfindliche
Nutzpflanzen oder natürliche Ökosysteme in der
Randzone eines Ballungsraumes hohen
Ozonkonzentrationen ausgesetzt sind;
gegebenenfalls auch einige Stationen in
vorstädtischen Gebieten auf der der
Hauptwindrichtung zugewandten Seite
(außerhalb der Gebiete mit den höchsten
Emissionen), um die regionalen
Hintergrundwerte für Ozon zu ermitteln

ländlich Schutz der menschlichen
Gesundheit und der
Vegetation:
Beurteilung der Exposition der
Bevölkerung, der Nutzpflanzen
und der natürlichen Ökosysteme
gegenüber Ozonkonzentrationen
von subregionaler Ausdehnung

subregionale
Ebene
(einige km2)

Die Stationen können sich in kleinen Siedlungen
und/oder Gebieten mit natürlichen Ökosystemen,
Wäldern oder Nutzpflanzenkulturen befinden;
repräsentative Gebiete für Ozon außerhalb des
Einflussbereichs örtlicher Emittenten wie
Industrieanlagen und Straßen;
in offenem Gelände, jedoch nicht auf
Berggipfeln

ländlicher
Hintergrund

Schutz der Vegetation und der
der menschlichen Gesundheit:
Beurteilung der Exposition von
Nutzpflanzen und natürlichen
Ökosystemen
gegenüber
Ozonkonzentrationen von
regionaler Ausdehnung sowie
der Exposition der
Bevölkerung

regionale/natio-
nale/kontinen-
tale Ebene
(1 000 bis
10 000 km2)

in Gebieten mit niedrigerer Bevölkerungsdichte,
z. B. mit natürlichen Ökosystemen (wie
Wäldern), weit entfernt von Stadt- und
Industriegebieten und entfernt von örtlichen
Emissionsquellen;
zu vermeiden sind Standorte mit örtlich
verstärkter Bildung bodennaher Temperatur-
inversionen sowie Gipfel höherer Berge;
Küstengebiete mit ausgeprägten täglichen
Windzyklen örtlichen Charakters werden
ebenfalls nicht empfohlen.
(a) Probenahmestellen sollten möglichst für ähnliche Standorte repräsentativ sein, die nicht in ihrer
unmittelbaren Nähe gelegen sind.

Deutscher Bundestag – 16. Wahlperiode – 57 – Drucksache 16/1814

Bei ländlichen Stationen und Stationen im ländlichen Hintergrund ist der Standort gegebenen-
falls mit den Überwachungsanforderungen aufgrund der Verordnung (EG) Nr. 1091/94 vom
29. April 1994 der Kommission mit Durchführungsbestimmungen zu der Verordnung (EWG)
Nr. 3528/86 des Rates über den Schutz des Waldes in der Gemeinschaft gegen Luftver-
schmutzung1 zu koordinieren.

B. UNMITTELBARE UMGEBUNG

Soweit möglich ist im Zusammenhang mit der unmittelbaren Umgebung entsprechend
Anhang III Teil B vorzugehen. Es ist außerdem sicherzustellen, dass der Messeinlass sich in
beträchtlicher Entfernung von Emissionsquellen wie Öfen oder Schornsteinen von
Verbrennungsanlagen und in mehr als 10 m Entfernung von der nächstgelegenen Straße
befindet, wobei der einzuhaltende Abstand mit der Verkehrsdichte zunimmt.

C. DOKUMENTATION UND ÜBERPRÜFUNG DER STANDORTWAHL

Es ist gemäß Anhang III Teil C vorzugehen, wobei eine gründliche Voruntersuchung und
Auswertung der Messdaten unter Beachtung der meteorologischen und photochemischen
Prozesse, die die an den einzelnen Standorten gemessenen Ozonkonzentrationen beeinflussen,
vorzunehmen ist.
1 ABl. L 125 vom 18.5.1994, S. 1.

Drucksache 16/1814 – 58 – Deutscher Bundestag – 16. Wahlperiode

ANHANG IX

KRITERIEN ZUR BESTIMMUNG DER MINDESTZAHL VON
PROBENAHMESTELLEN FÜR DIE ORTSFESTEN MESSUNGEN VON

OZONKONZENTRATIONEN

A. MINDESTZAHL DER PROBENAHMESTELLEN FÜR ORTSFESTE MESSUNGEN ZUR
BEURTEILUNG DER LUFTQUALITÄT IM HINBLICK AUF DIE EINHALTUNG DER ZIEL-
WERTE, DER LANGFRISTIGEN ZIELE UND DER INFORMATIONS- UND ALARM-
SCHWELLEN, SOWEIT SOLCHE MESSUNGEN DIE EINZIGE INFORMATIONSQUELLE
DARSTELLEN

Einwohnerzahl
(× 1 000)

Ballungsräume
(städtische und

vorstädtische Gebiete)

sonstige Gebiete
(vorstädtische und
ländlicheGebiete)

ländlicher Hintergrund

< 250 1

< 500 1 2

< 1 000 2 2

< 1 500 3 3

< 2 000 3 4

< 2 750 4 5

< 3 750 5 6

> 3 750
1 zusätzliche Station je
2 Mio. Einwohner

1 zusätzliche Station je
2 Mio. Einwohner

1 Station/50 000 km2 (mittlere
Dichte für alle Gebiete pro Land)(b)

(a) Mindestens eine Station in vorstädtischen Gebieten, in denen die Exposition der Bevölkerung am stärksten sein
dürfte. In Ballungsräumen müssen mindestens 50 % der Stationen in Vorstadtgebieten liegen.

(b) Eine Station je 25 000 km2 in orografisch stark gegliedertem Gelände wird empfohlen.

B. MINDESTZAHL DER PROBENAHMESTELLEN FÜR ORTSFESTE MESSUNGEN IN
GEBIETEN UND BALLUNGSRÄUMEN, IN DENEN DIE LANGFRISTIGEN ZIELE
EINGEHALTEN WERDEN

Die Zahl der Ozon-Probenahmestellen muss in Verbindung mit den zusätzlichen Beurtei-
lungsmethoden wie Luftqualitätsmodellierung und am gleichen Standort durchgeführte Stick-
stoffdioxidmessungen zur Prüfung des Trends der Ozonbelastung und der Einhaltung der
langfristigen Ziele ausreichen. Die Zahl der Stationen in Ballungsräumen und in anderen
Gebieten kann auf ein Drittel der in Teil A angegebenen Zahl verringert werden. Wenn die
Informationen aus ortsfesten Stationen die einzige Informationsquellen darstellen, muss
zumindest eine Messstation beibehalten werden. Hat dies in Gebieten, in denen zusätzliche
Beurteilungsmethoden eingesetzt werden, zur Folge, dass in einem Gebiet keine Station mehr
vorhanden ist, so ist durch Koordinierung mit den Stationen der benachbarten Gebiete
sicherzustellen, dass die Einhaltung der langfristigen Ziele hinsichtlich der Ozonkonzen-

trationen ausreichend beurteilt werden kann. Die Anzahl der Stationen im ländlichen
Hintergrund muss 1/100 000 km2 betragen.

Deutscher Bundestag – 16. Wahlperiode – 59 – Drucksache 16/1814

ANHANG X

MESSUNG VON OZONVORLÄUFERSTOFFEN

A. ZIELE

Die Hauptzielsetzung dieser Messungen besteht in der Ermittlung von Trends bei den
Ozonvorläuferstoffen, der Prüfung der Wirksamkeit der Emissionsminderungsstrategien, der
Prüfung der Einheitlichkeit von Emissionsinventaren und der Zuordnung von Emissions-
quellen zu gemessenen Schadstoffkonzentrationen.

Ferner sollen ein besseres Verständnis der Mechanismen der Ozonbildung und der
Ausbreitung der Ozonvorläuferstoffe erreicht sowie die Anwendung photochemischer
Modelle unterstützt werden.

B. STOFFE

Die Messung von Ozonvorläuferstoffen muss mindestens Stickstoffoxide (NO und NO2)
sowie folgende flüchtige organische Verbindungen (VOC) umfassen:

1-Buten Isopren Ethylbenzol

Ethan trans-2-Buten n-Hexan m+p-Xylol

Ethylen cis-2-Buten i-Hexan o-Xylol

Acetylen 1,3-Butadien n-Heptan 1,2,4-Trimethylbenzol

Propan n-Pentan n-Oktan 1,2,4-Trimethylbenzol

Propen i-Pentan i-Oktan 1,2,4-Trimethylbenzol

n-Butan 1-Penten Benzol Formaldehyd

i-Butan 2-Penten Toluol Summe der Kohlenwasserstoffe ohne Methan

C. STANDORTKRITERIEN

Die Messungen müssen insbesondere in städtischen und vorstädtischen Gebieten in gemäß
dieser Richtlinie errichteten Messstationen durchgeführt werden, die für die in Abschnitt A
erwähnten Überwachungsziele als geeignet betrachtet werden.

Drucksache 16/1814 – 60 – Deutscher Bundestag – 16. Wahlperiode

ANHANG XI

GRENZWERTE ZUM SCHUTZ DER MENSCHLICHEN GESUNDHEIT

Mittelungs-
zeitraum

Grenzwert Toleranzmarge Frist für die
Einhaltung des

Grenzwerts

Schwefeldioxid

Stunde
350 μg/m3 dürfen nicht öfter
als 24-mal im Kalenderjahr

überschritten werden
150 μg/m3 (43 %)

Tag
125 μg/m3 dürfen nicht öfter
als dreimal im Kalenderjahr

überschritten werden
Keine

Stickstoffdioxid

Stunde
200 μg/m3 dürfen nicht öfter
als 18-mal im Kalenderjahr

überschritten werden

50 % am 19. Juli 1999, Reduzierung am
1. Januar 2001 und danach alle 12 Mona-
te um einen jährlich gleichen Prozentsatz
bis auf 0 % am 1. Januar 2010

1. Januar 2010

Kalenderjahr 40 μg/m3
50 % am 19. Juli 1999, Reduzierung am
1 Januar 2001 und danach alle 12 Monate
um einen jährlich gleichen Prozentsatz bis
auf 0 % am 1. Januar 2010

1. Januar 2010

Kohlenstoffmonoxid

max. 8-Stunden-
Mittelwert pro
Tag(1)

10 mg/m3 60 %

Benzol

Kalenderjahr 5 μg/m3
5 μg/m3 (100 %) am 13. Dezember 2000,
Reduzierung am 1. Januar 2006 und
danach alle 12 Monate um 1 μg/m3 bis
auf 0 % am 1. Januar 2010

1. Januar 2010

Blei

Kalenderjahr 0,5 μg/m3 100 %

Deutscher Bundestag – 16. Wahlperiode – 61 – Drucksache 16/1814

PM10

Tag
50 μg/m3 dürfen nicht öfter
als 35-mal im Kalenderjahr

überschritten werden
50 %

Kalenderjahr 40 μg/m3 20 %

(1) Der höchste 8-Stunden-Mittelwert der Konzentrationen eines Tages ist zu ermitteln, indem die
gleitenden 8-Stunden-Mittelwerte geprüft werden, die aus Einstundenmittelwerten berechnet und
stündlich aktualisiert werden. Jeder auf diese Weise errechnete 8-Stunden-Mittelwert gilt für den Tag, an
dem dieser Zeitraum endet, das heißt, dass der erste Berechnungszeitraum für jeden einzelnen Tag die
Zeitspanne von 17.00 Uhr des vorangegangenen Tages bis 1.00 Uhr des betreffenden Tages umfasst,
während für den letzten Berechnungszeitraum jeweils die Stunden von 16.00 Uhr bis 24.00 Uhr des
betreffenden Tages zugrunde gelegt werden.

Drucksache 16/1814 – 62 – Deutscher Bundestag – 16. Wahlperiode

ANHANG XII

INFORMATIONSSCHWELLE UND ALARMSCHWELLEN

A. ALARMSCHWELLEN FÜR ANDERE SCHADSTOFFE ALS OZON

Die Werte sind drei aufeinander folgende Stunden lang an Orten zu messen, die für
die Luftqualität in einem Bereich von mindestens 100 km2, oder im gesamten Gebiet
oder Ballungsraum, je nachdem welche Fläche kleiner ist, repräsentativ sind.

Schadstoff Alarmschwelle

Schwefeldioxid 500 μg/m3

Stickstoffdioxid 400 μg/m3

B. INFORMATIONSSCHWELLE UND ALARMSCHWELLE FÜR OZON

Zweck Mittelungszeitraum Schwellenwert

Information 1 Stunde 180 μg/m3

Alarm 1 Stunde (a) 240 μg/m3

(a) Im Zusammenhang mit der Umsetzung von Artikel 18 muss die Überschreitung des
Schwellenwerts drei aufeinander folgende Stunden lang gemessen bzw. vorhergesagt

Deutscher Bundestag – 16. Wahlperiode – 63 – Drucksache 16/1814

ANHANG XIII

KRITISCHE WERTE FÜR DEN SCHUTZ DER VEGETATION

Mittelungszeitraum kritischer Wert Toleranzmarge Frist für die Einhaltung des kritischen Werts

Schwefeldioxid

Kalenderjahr und Winter
(1. Oktober bis 31. März)

20 μg/m3 Keine

Stickstoffoxide

Kalenderjahr 30 μg/m3 Keine

Drucksache 16/1814 – 64 – Deutscher Bundestag – 16. Wahlperiode

ANHANG XIV

REDUZIERUNG DER EXPOSITION UND KONZENTRATIONSOBERGRENZE
FÜR PM2,5

A. INDIKATOR FÜR DIE DURCHSCHNITTLICHE EXPOSITION

Der Indikator für die durchschnittliche Exposition (AEI – Average Exposure
Indicator) wird in μg/m3 ausgedrückt und anhand von Messungen an Messstationen
für städtische Hintergrundquellen in Gebieten und Ballungsräumen des gesamten
Hoheitsgebiets eines Mitgliedstaats ermittelt. Er sollte als gleitender Jahresmittelwert
für drei Kalenderjahre berechnet werden, indem der Durchschnittswert aller
Probenahmestellen gemäß Artikel 6 und Artikel 7 gebildet wird. Der AEI für das
Referenzjahr 2010 ist der Mittelwert der Jahre 2008, 2009 und 2010. Entsprechend
ist der AEI für das Jahr 2020 der gleitende Jahresmittelwert (Durchschnittswert aller
Probenahmestellen) für die Jahre 2018, 2019 und 2020.

B. ZIEL FÜR DIE REDUZIERUNG DER EXPOSITION

Ziel für die Reduzierung der Exposition gegenüber dem AEI 2010 Zeitpunkt, zu dem
das Ziel für die

Reduzierung der
Exposition möglichst

zu erreichen ist

20 Prozent 2020

Ergibt sich als Indikator für die durchschnittliche Exposition ausgedrückt in μg/m3

im Referenzjahr 7μg/m3 oder weniger, ist das Ziel für die Reduzierung der
Exposition mit Null anzusetzen.

C. KONZENTRATIONSOBERGRENZE

Mittelungs-
zeitraum

Konzentrations-
höchstwert

Toleranzmarge(1) Frist für die
Einhaltung der
Konzentrations-

obergrenze

Kalender-
jahr

25 μg/m3 20 % bei Inkrafttreten dieser Richtlinie,
Reduzierung am folgenden 1. Januar und
danach alle 12 Monate um einen jährlich
gleichen Prozentsatz bis auf 0 % am
1. Januar 2010

1. Januar 2010

(1) Die maximale Toleranzmarge gilt auch im Zusammenhang mit Artikel 15 Absatz 4.

Deutscher Bundestag – 16. Wahlperiode – 65 – Drucksache 16/1814

ANHANG XV

IN DEN ÖRTLICHEN, REGIONALEN UND EINZELSTAATLICHEN PLÄNEN UND
PROGRAMMEN ZUR VERBESSERUNG DER LUFTQUALITÄT ZU

BERÜCKSICHTIGENDE INFORMATIONEN

A. NACH ARTIKEL 21 (PLÄNE ODER PROGRAMME) ZU ÜBERMITTELNDE INFOR-
MATIONEN

1. Ort der Überschreitung der Grenzwerte:

a) Region;

b) Ortschaft (Karte);

c) Messstation (Karte, geographische Koordinaten).

2. Allgemeines

a) Art des Gebiets (Stadt, Industriegebiet oder ländliches Gebiet);

b) Schätzung des verschmutzten Gebiets (km²) und der der Verschmutzung
ausgesetzten Bevölkerung;

c) zweckdienliche Klimaangaben;

d) zweckdienliche topographische Daten

e) ausreichende Informationen über die Art der in dem betreffenden Gebiet zu
schützenden Ziele.

3. Zuständige Behörden

Name und Anschrift der für die Ausarbeitung und Durchführung der Verbesserungs-
pläne zuständigen Personen.

4. Art und Beurteilung der Verschmutzung

a) in den vorangehenden Jahren (vor der Durchführung der Verbesserungs-
maßnahmen) festgestellte Konzentrationen;

b) seit dem Beginn des Vorhabens gemessene Konzentrationen;

c) Beurteilungsmethode.

5. Ursprung der Verschmutzung

a) Liste der wichtigsten Emissionsquellen, die für die Verschmutzung verant-
wortlich sind (Karte);

b) Gesamtmenge der Emissionen aus diesen Quellen (Tonnen/Jahr);
c) Informationen über Verschmutzungen, die ihren Ursprung in anderen Gebieten
haben.

Drucksache 16/1814 – 66 – Deutscher Bundestag – 16. Wahlperiode

6. Analyse der Lage

a) Einzelheiten zu den Faktoren, die zu den Überschreitungen geführt haben (z. B.
Transport, einschließlich grenzüberschreitender Transport, Entstehung sekun-
därer Schadstoffe in der Atmosphäre);

b) Einzelheiten zu möglichen Maßnahmen zur Verbesserung der Luftqualität.

7. Angaben zu den bereits vor dem Inkrafttreten dieser Richtlinie durchgeführten
Maßnahmen oder bestehenden Verbesserungsvorhaben

a) örtliche, regionale, nationale und internationale Maßnahmen;

b) festgestellte Wirkungen.

8. Angaben zu den nach dem Inkrafttreten dieser Richtlinie zur Verminderung der
Verschmutzung beschlossenen Maßnahmen oder Vorhaben

a) Auflistung und Beschreibung aller in den Vorhaben genannten Maßnahmen;

b) Zeitplan zur Durchführungs

c) Schätzung der angestrebten Verbesserung der Luftqualität und des für die
Verwirklichung dieser Ziele veranschlagten Zeitraums.

9. Angaben zu den geplanten oder langfristig angestrebten Maßnahmen oder Vorhaben.

10. Liste der Veröffentlichungen, Dokumente, Arbeiten usw., die die in diesem Anhang
vorgeschriebenen Informationen ergänzen.

B. NACH ARTIKEL 20 ABSATZ 1 BUCHSTABE b ZU ÜBERMITTELNDE INFORMATIONEN
(PROGRAMM ZUR LUFTREINHALTUNG)

1. Sämtliche Informationen gemäß Abschnitt A dieses Anhangs.

2. Informationen betreffend den Stand der Umsetzung nachstehender Richtlinien:

(1) Richtlinie 70/220/EWG des Rates vom 20. März 1970 zur Angleichung der
Rechtsvorschriften der Mitgliedstaaten über Maßnahmen gegen die Verunreini-
gung der Luft durch Abgase von Kraftfahrzeugmotoren mit Fremdzündung1;

(2) Richtlinie 88/77/EWG des Rates vom 3. Dezember 1987 zur Angleichung der
Rechtsvorschriften der Mitgliedstaaten über Maßnahmen gegen die Emission
gasförmiger Schadstoffe aus Dieselmotoren zum Antrieb von Fahrzeugen2;

(3) Richtlinie 94/63/EG des Europäischen Parlaments und des Rates vom
20. Dezember 1994 zur Begrenzung der Emissionen flüchtiger organischer
Verbindungen (VOC-Emissionen) bei der Lagerung von Ottokraftstoff und
seiner Verteilung von den Auslieferungslagern bis zu den Tankstellen3;
1 ABl. L 76 vom 6.4.1970, S. 1.
2 ABl. L 36 vom 9.2.1988, S. 33.
3 ABl. L 365 vom 31.12.1994, S. 24.

Deutscher Bundestag – 16. Wahlperiode – 67 – Drucksache 16/1814

(4) Richtlinie 96/61/EG des Rates vom 24. September 1996 über die integrierte
Vermeidung und Verminderung der Umweltverschmutzung4;

(5) Richtlinie 97/68/EG des Europäischen Parlamentes und des Rates vom
16. Dezember 1997 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten
über Maßnahmen zur Bekämpfung der Emission von gasförmigen Schad-
stoffen und luftverunreinigenden Partikeln aus Verbrennungsmotoren für
mobile Maschinen und Geräte5;

(6) Richtlinie 98/70/EG des Europäischen Parlaments und des Rates vom
13. Oktober 1998 über die Qualität von Otto- und Dieselkraftstoffen und zur
Änderung der Richtlinie 93/12/EWG des Rates6;

(7) Richtlinie 1999/13/EG des Rates vom 11. März 1999 über die Begrenzung von
Emissionen flüchtiger organischer Verbindungen, die bei bestimmten Tätig-
keiten und in bestimmten Anlagen bei der Verwendung organischer Lösungs-
mittel entstehen7;

(8) Richtlinie 1999/32/EG des Rates vom 26. April 1999 über eine Verringerung
des Schwefelgehalts bestimmter flüssiger Kraft- oder Brennstoffe und zur
Änderung der Richtlinie 93/12/EWG8;

(9) Richtlinie 2000/76/EG des Europäischen Parlaments und des Rates vom
4. Dezember 2000 über die Verbrennung von Abfällen9;

(10) Richtlinie 2001/80/EG des Europäischen Parlaments und des Rates vom
23. Oktober 2001 zur Begrenzung von Schadstoffemissionen von Großfeue-
rungsanlagen in die Luft;

(11) Richtlinie 2001/81/EG des Europäischen Parlaments und des Rates vom
23. Oktober 2001 über nationale Emissionshöchstmengen für bestimmte Luft-
schadstoffe;

(12) Richtlinie 2004/42/EG des Europäischen Parlaments und des Rates vom
21. April 2004 über die Begrenzung der Emissionen flüchtiger organischer
Verbindungen aufgrund der Verwendung organischer Lösemittel in bestimmten
Farben und Lacken und in Produkten der Fahrzeugreparaturlackierung sowie
zur Änderung der Richtlinie 1999/13/EG10;

(13) Richtlinie […] des Europäischen Parlaments und des Rates zur Endenergie-
effizienz und zu Energiedienstleistungen11;

4 ABl. L 257 vom 10.10.1996, S. 22.
5 ABl. L 59 vom 27.2.1998, S. 1.
6 ABl. L 350 vom 28.12.1998, S. 58.
7 ABl. L 85 vom 29.3.1999, S. 1.
8
ABl. L 121 vom 11.5.1999, S. 13.
9 ABl. L 332 vom 28.12.2000, S. 91.
10 ABl. L 143 vom 30.4.1999, S. 87.
11 ABl. L […] vom […], S. […].

Drucksache 16/1814 – 68 – Deutscher Bundestag – 16. Wahlperiode

(14) Richtlinie […] des Europäischen Parlaments und des Rates zur Änderung der
Richtlinie 1999/32/EG im Hinblick auf den Schwefelgehalt von Schiffskraft-
stoffen12.

3. Informationen über alle Maßnahmen zur Verringerung der Luftverschmutzung, die
im Hinblick auf Luftqualitätsziele berücksichtigt wurden, u. a.:

auf der Ebene des Ballungsraums bzw. des Gebiets:

a) Verringerung der Emissionen aus ortsfesten Quellen, indem sichergestellt wird,
dass Schadstoff produzierende kleine und mittlere stationäre Verbrennungs-
anlagen (auch für Biomasse) mit Geräten zur Emissionseindämmung
ausgestattet oder durch neue Anlagen ersetzt werden;

b) Verringerung der Emissionen von Fahrzeugen durch Nachrüstung mit Geräten
zur Emissionseindämmung Der Einsatz wirtschaftlicher Anreize zur Beschleu-
nigung einer solchen Ausrüstung ist in Erwägung zu ziehen;

c) Öffentliches Beschaffungswesen im Einklang mit dem Handbuch für eine
umweltgerechtere öffentliche Beschaffung13 (bei Straßenfahrzeugen, Kraft-
und Brennstoffen und Verbrennungsanlagen) mit dem Ziel der Emissions-
verringerung, einschließlich des Erwerbs/der Inanspruchnahme von:

– Neufahrzeugen, einschließlich solcher mit geringem Schadstoffausstoß

– Verkehrsdiensten mit umweltfreundlicheren Fahrzeugen

– stationären Verbrennungsanlagen mit geringem Schadstoffausstoß

– schadstoffarmen Kraft- oder Brennstoffen für stationäre und mobile
Quellen;

d) Maßnahmen zur Begrenzung der verkehrsbedingten Emissionen durch Verkehrs-
planung und -management (einschließlich Verkehrsüberlastungsgebühren,
gestaffelter Parkgebühren und sonstiger finanzieller Anreize, Einrichtung von
„Gebieten mit geringem Emissionsniveau“);

e) Maßnahmen zur Förderung einer Umstellung auf umweltfreundlichere
Verkehrsträger;

f) Sicherstellung der Verwendung von schadstoffarmen Kraft- und Brennstoffen
in kleinen, mittleren und großen stationären und mobilen Quellen;

auf regionaler und nationaler Ebene:

g) Maßnahmen zur Verringerung der Luftverschmutzung durch das Vergabe-
system von Genehmigungen im Rahmen der Richtlinie 96/61/EG, aufgrund der
einzelstaatlichen Pläne gemäß der Richtlinie 2001/80/EG und mittels wirt-
schaftlicher Instrumente (Steuern, Gebühren, Emissionshandel etc.).
12 ABl. L […] vom […], S. […].
13 SEK(2004) 1050.

Deutscher Bundestag – 16. Wahlperiode – 69 – Drucksache 16/1814

ANHANG XVI

UNTERRICHTUNG DER ÖFFENTLICHKEIT

1. Die Mitgliedstaaten stellen sicher, dass aktuelle Informationen über die
Konzentrationen der in dieser Richtlinie geregelten Schadstoffe in der Luft der
Öffentlichkeit routinemäßig zugänglich gemacht werden.

2. Die Konzentrationswerte sind als Durchschnittswerte vorzulegen, entsprechend dem
jeweiligen Mittelungszeitraum gemäß den Anhängen VII und XI bis XVI. Die
Informationen müssen zumindest die Konzentrationen enthalten, mit denen
Luftqualitätsziele überschritten werden (Grenzwerte, Konzentrationsobergrenzen,
Zielwerte, Alarmschwellen, Informationsschwellen und langfristige Ziele für die
regulierten Schadstoffe). Hinzu kommen ferner eine kurze Beurteilung anhand der
Luftqualitätsziele sowie einschlägige Angaben über gesundheitliche Auswirkungen
bzw. gegebenenfalls Auswirkungen auf die Vegetation.

3. Die Informationen über die Konzentrationen von Schwefeldioxid, Stickstoffdioxid,
Partikeln, Ozon und Kohlenmonoxid in der Luft sind mindestens täglich bzw.
- soweit möglich - stündlich zu aktualisieren. Die Informationen über die Konzen-
trationen von Blei und Benzol in der Luft sind in Form eines Durchschnittswertes für
die letzten 12 Monate vorzulegen und alle drei Monate - bzw., soweit möglich,
monatlich - zu aktualisieren.

4. Die Mitgliedstaaten stellen sicher, dass die Bevölkerung rechtzeitig über festgestellte
oder vorhergesagte Überschreitungen der Alarmschwellen oder Informations-
schwellen unterrichtet wird. Die Angaben müssen mindestens Folgendes umfassen:

a) Informationen über eine oder mehrere festgestellte Überschreitungen:

– Ort oder Gebiet der Überschreitung

– Art der überschrittenen Schwelle (Informationsschwelle oder Alarm-
schwelle)

– Beginn und Dauer der Überschreitung

– höchste 1-Stunden-Konzentration und höchster 8-Stunden-Mittelwert für
Ozon

b) Vorhersage für den kommenden Nachmittag/Tag (die kommenden Nach-
mittage/Tage):

– geographisches Gebiet erwarteter Überschreitungen der Informations-
schwellen und/oder Alarmschwellen

– erwartete Änderungen bei der Luftverschmutzung (Verbesserung,
Stabilisierung oder Verschlechterung) sowie die Gründe für diese

Änderungen

Drucksache 16/1814 – 70 – Deutscher Bundestag – 16. Wahlperiode

c) Informationen über die betroffene Bevölkerungsgruppe, mögliche gesundheit-
liche Auswirkungen und empfohlenes Verhalten:

– Informationen über gefährdete Bevölkerungsgruppen

– Beschreibung möglicher Symptome

– der betroffenen Bevölkerung empfohlene Vorsichtsmaßnahmen

– weitere Informationsquellen

d) Informationen über vorbeugende Maßnahmen zur Verminderung der
Luftverschmutzung und/oder der Exposition (Angabe der wichtigsten
Verursachersektoren); Empfehlungen für Maßnahmen zur Verringerung der
Emissionen

e) Im Zusammenhang mit vorhergesagten Überschreitungen ergreifen die
Mitgliedstaaten die erforderlichen Maßnahmen um eine Bereitstellung dieser
Angaben sicherzustellen, soweit dies möglich ist.

Deutscher Bundestag – 16. Wahlperiode – 71 – Drucksache 16/1814

ANHANG XVII

KORRELATIONSTABELLE

diese Richtlinie Richtlinie
96/62/EG

Richtlinie
1999/30/EG

Richtlinie
2000/69/EG

Richtlinie
2002/3/EG

Artikel 1 Artikel 1 Artikel 1 Artikel 1 Artikel 1

Artikel 2
Absätze 1 bis 5

Artikel 2
Absätze 1 bis 5

- - -

Artikel 2
Absätze 6 und 7

- - - -

Artikel 2
Absatz 8

Artikel 2
Absatz 8

Artikel 2 Absatz 7 - -

Artikel 2
Absatz 9

Artikel 2
Absatz 6

- - Artikel 2
Absatz 9

Artikel 2
Absatz 10

Artikel 2
Absatz 7

Artikel 2 Absatz 6 - Artikel 2
Absatz 11

Artikel 2
Absatz 11

- - - Artikel 2
Absatz 12

Artikel 2
Absätze 12
und 13

- Artikel 2
Absätze 13 und 14

Artikel 2
Buchstaben a
und b

-

Artikel 2
Absatz 14

- - - Artikel 2
Absatz 10

Artikel 2
Absätze 15
und 16

Artikel 2
Absätze 9 und 10

Artikel 2
Absätze 8 und 9

- Artikel 2
Absätze 7
und 8

Artikel 2
Absätze 17
und 18

- Artikel 2
Absätze 11 und 12

- -

Artikel 2
Absätze 19, 20
und 21

- - - -

Artikel 2
Absatz 22

- Artikel 2
Absatz 10

- -

Drucksache 16/1814 – 72 – Deutscher Bundestag – 16. Wahlperiode

Artikel 2
Absätze 23
und 24

Artikel 6
Absatz 5

- - -

Artikel 2
Absatz 25

- - - Artikel 2
Absatz 13

Artikel 3,
ausgenommen
Absatz 1
Buchstabe f

Artikel 3 - - -

Artikel 3
Absatz 1
Buchstabe f

- - - -

Artikel 4 Artikel 2
Absätze 9
und 10, Artikel 6
Absatz 1

- - -

Artikel 5 - Artikel 7 Absatz 1 Artikel 5
Absatz 1

-

Artikel 6
Absätze 1 bis 4

Artikel 6
Absätze 1 bis 4

- - -

Artikel 6
Absatz 5

- - - -

Artikel 7 - Artikel 7
Absätze 2 und 3
mit Änderungen

Artikel 5
Absätze 2 und 3
mit Änderungen

Artikel 8 - Artikel 7 Absatz 5 Artikel 5
Absatz 5

-

Artikel 9 - - - Artikel 9
Absatz 1 erster
und zweiter
Unterabsatz

Artikel 10 - - - Artikel 9
Absätze 1 bis 3
mit
Änderungen

Artikel 11 - - - Artikel 9

Absatz 1 Absatz 4

Deutscher Bundestag – 16. Wahlperiode – 73 – Drucksache 16/1814

Artikel 11
Absatz 2

- - - -

Artikel 12 Artikel 9 - - -

Artikel 13
Absatz 1

- Artikel 3
Absatz 1,
Artikel 4
Absatz 1,
Artikel 5 Absatz 1
und Artikel 6

Artikel 3
Absatz 1 und
Artikel 4

-

Artikel 13
Absatz 2

- Artikel 3 Absatz 2
und Artikel 4
Absatz 2

- -

Artikel 13
Absatz 3

- Artikel 5 Absatz 5 - -

Artikel 14 - Artikel 3 Absatz 1
und Artikel 4
Absatz 1 mit
Änderungen

- -

Artikel 15 - - - -

Artikel 16
Absatz 1

- - - Artikel 3
Absatz 1 und
Artikel 4
Absatz 1

Artikel 16
Absatz 2

- - - Artikel 3
Absätze 2
und 3

Artikel 16
Absatz 3

- - - Artikel 4
Absatz 2

Artikel 17 - - - Artikel 5

Artikel 18 Artikel 10 mit
Änderungen

Artikel 8 Absatz 3 - Artikel 6 mit
Änderungen

Artikel 19 - Artikel 3 Absatz 4
und Artikel 5
Absatz 4 mit
Änderungen

- -
Artikel 20 - - - -

Drucksache 16/1814 – 74 – Deutscher Bundestag – 16. Wahlperiode

Artikel 21 Artikel 8 Absätze
1 bis 4 mit
Änderungen

- - -

Artikel 22 Artikel 7
Absatz 3 mit
Änderungen

- - Artikel 7 mit
Änderungen

Artikel 23 Artikel 8
Absatz 5 mit
Änderungen

- - Artikel 8 mit
Änderungen

Artikel 24 - Artikel 8 mit
Änderungen

Artikel 7 mit
Änderungen

Artikel 6 mit
Änderungen

Artikel 25 Artikel 11 mit
Änderungen

Artikel 5 Absatz 2
zweiter
Unterabsatz

- Artikel 10 mit
Änderungen

Artikel 26
Absatz 1

Artikel 12
Absatz 1 mit
Änderungen

- - -

Artikel 26
Absatz 2

Artikel 11 mit
Änderungen

- - -

Artikel 26
Absatz 3

- - - -

Artikel 26
Absatz 4

- Anhang IX mit
Änderungen

- -

Artikel 27 Artikel 12
Absatz 2

- - -

Artikel 28 - Artikel 11 Artikel 9 Artikel 14

Artikel 29 - - - -

Artikel 30 - - - -

Artikel 31 Artikel 13 Artikel 12 Artikel 10 Artikel 15

Artikel 32 Artikel 14 Artikel 13 Artikel 11 Artikel 17

Artikel 33 Artikel 15 Artikel 14 Artikel 12 Artikel 18

Anhang I - Anhang VIII mit
Änderungen

Anhang VI Anhang VII

Deutscher Bundestag – 16. Wahlperiode – 75 – Drucksache 16/1814

Anhang II - Anhang V mit
Änderungen

Anhang III

Anhang III - Anhang VI Anhang
Investitionen

-

Anhang IV - - - -

Anhang V - Anhang VII mit
Änderungen

Anhang
Verordnung

-

Anhang VI - Anhang IX mit
Änderungen

Anhang VII Anhang VIII

Anhang VII - - - Anhang I,
Anhang III
Teil II

Anhang VIII - - - Anhang IV

Anhang IX - - - Anhang V

Anhang X - - - Anhang VI

Anhang XI - Anhang I Teil I,
Anhang II Teil I
und Anhang III
(mit Änderungen)
Anhang IV
(unverändert)

Anhang I,
Anhang II

-

Anhang XII - Anhang I Teil II,
Anhang II Teil II

- Anhang II
Teil I

Anhang XIII - Anhang I Teil I,
Anhang II Teil I

- -

Anhang XIV - - - -

Anhang XV
Teil A

Anhang IV - - -

Anhang XV
Teil B

- - - -

Anhang XVI - Artikel 8 Artikel 7 Artikel 6 mit
Änderungen

Deutscher Bundestag – 16. Wahlperiode – 77 – Drucksache 16/1814

COUNCIL OF
THE EUROPEAN UNION

Brussels, 18 November 2005
Interinstitutional File:
2005/0183 (COD)

14335/05
ADD 1

ENV 525
ENER 170
IND 76
TRANS 232
ENT 141
CODEC 1010
ADDENDUM to PROPOSAL
from: European Commission
dated: 17 November 2005
Subject: Commission staff working paper

Annex to: The Communication on Thematic Strategy on Air Pollution and The
Directive on “Ambient Air Quality and Cleaner Air for Europe”
Impact Assessment

Delegations will find attached a proposal from the Commission, submitted under a covering letter
from Mr Jordi AYET PUIGARNAU to Mr Javier SOLANA, Secretary-General/High
Representative.

________________________
Encl.: SEC(2005) 1133

Drucksache 16/1814 – 78 – Deutscher Bundestag – 16. Wahlperiode

COMMISSION OF THE EUROPEAN COMMUNITIES

Brussels, 21 9.2005
SEC (2005) 1133

COMMISSION STAFF WORKING PAPER

Annex to :

The Communication on Thematic Strategy on Air Pollution
and

The Directive on “Ambient Air Quality and Cleaner Air for Europe”

Impact Assessment
{COM(2005)446 final}
{COM(2005)447 final}

Deutscher Bundestag – 16. Wahlperiode – 79 – Drucksache 16/1814

TABLE OF CONTENT

Summaryb ..................................................................................................................................b 84

1. b Introductionb .............................................................................................................. 100

2. b What problem does the Thematic Strategy on Air Pollution set out to tackle?b ....... 102

2.1. b The problem of air pollutionb .................................................................................... 102

2.2. b Trends in air pollution levels up to 2020: the CAFE Baselineb ................................ 106

2.3. b Quantification and valuation of health impacts of air pollutionb .............................. 114

2.4. b Environmental and non-health impactsb.................................................................... 119

3. b The long-term objectives.......................................................................................... 120

3.1. b Current policies will not bring about the long term objectiveb ................................. 120

3.2. b A point of reference – The maximum technically feasibly reductionb...................... 120

4. b The main policy options considered for the strategyb ............................................... 123

4.1. b The broad approach for setting the interim objectivesb............................................. 123

4.2. b Final set of policy optionsb ........................................................................................ 129

5. b Impact assessment of the optionsb............................................................................. 130

5.1. b Impact on pollutant emissionsb.................................................................................. 130

5.2. b Impact on air quality and human healthb................................................................... 133

5.3. b Direct costs of measures........................................................................................... 135

5.4. b Uncertaintiesb ............................................................................................................ 136

5.5. b Sensitivity analysisb................................................................................................... 140

5.6. b Comparing costs and health impactsb........................................................................ 148

5.7. b Impact on ecosystemsb .............................................................................................. 152

5.8. b Summary of costs and benefitsb ................................................................................ 159

5.9. b Wider economic and social impactsb......................................................................... 160

5.10. b Other environmental impactsb ................................................................................... 166

6. b Measures and instrumentsb ........................................................................................ 168

6.1. b Emission reduction measures for meeting the ambition level of the Strategy –
indicative outcome of RAINS optimisation processb................................................ 168

6.2. b Measures consideredb ................................................................................................ 173
6.3. b Integration of air quality concerns into other sectorsb............................................... 177

Drucksache 16/1814 – 80 – Deutscher Bundestag – 16. Wahlperiode

6.4. b Applying effective policy instrumentsb .....................................................................b 179

7. Impact assessment for Directive on “Ambient Air Quality and Cleaner Air for
Europe”b ....................................................................................................................b 180

7.1. b Better regulation: Streamlining current air quality legislationb.................................b 180

7.2. b Health adviceb............................................................................................................b 183

7.3. Reducing exposure to PM2.5b.....................................................................................b 186

7.4. Costs and benefits of the proposal for regulating PM2.5b ..........................................b 190

8. b Monitoring and evaluationb .......................................................................................b 195

8.1. b Evaluation and review of policiesb ............................................................................b 195

8.2. b Consultative arrangementsb .......................................................................................b 195

8.3. b Research needs including financial implicationsb .....................................................b 196

9. b Stakeholder and public consultationb ........................................................................b 201

9.1. b Public consultationb ...................................................................................................b 201

9.2. b Stakeholder consultationb ..........................................................................................b 202

9.3. b Consultation within the Commissionb.......................................................................b 204

10. b Commission proposal and groundsb ..........................................................................b 205

10.1. b Selection of the interim objectives for the Thematic Strategy up to 2020b...............b 205

10.2. Better regulation –– cutting red tape and streamlining current air quality legislation
..................................................................................................................................b 212

10.3. b Proposal for regulating particulate matter and other air pollutionb ...........................b 213

Annexes ..................................................................................................................................b 215

Deutscher Bundestag – 16. Wahlperiode – 81 – Drucksache 16/1814

GLOSSARY AND ABBREVIATIONS

Acidification Excess acidity from the deposition of ammonia, nitrogen oxides
and sulphur dioxide can lead to the damage of freshwater and
terrestrial ecosystems.

Aerosol A dispersion of solid particulate matter or droplets in air.
Air quality limit value A legally binding pollutant concentration in air which may be

exceeded on a prescribed number of occasions per calendar year
(c.f. target value, an air quality objective which is not legally
binding ).

Air Quality Proposal Proposed Directive to merge the Air Quality Framework
Directive, first, second and third daughter directives, and the
Council Decision on the reciprocal exchange of air quality
monitoring information.

Ammonia (NH3) A gas which is emitted mainly from animal wastes and following
the application of fertilisers.

Background Urban background represents locations in urban areas where the
level of air pollutants is not mainly influenced by any single
source, but rather by the integrated contribution from all sources
upwind of this location. The air pollution level in these locations
should typically be representative for several km2.

Rural background represents locations with lower population
density, far removed from urban and industrial areas and away
from local emissions. The air pollution level in these locations
should typically be representative for an area of at least 1000 km2.

CAFE Clean Air for Europe programme
CAFE baseline
(called also
“Business-as-usual” or
“Current Legislation”)

The expected evolution in EU-25 pollutant emissions up to 2020
assuming that current legislation to reduce air pollution is
implemented. The baseline is based upon forecasts of economic
growth and changes in energy production, transport and other
polluting activities.

CAIR Clean Air Interstate Rule
CAP Common Agricultural Policy
CBA Cost-benefit analysis
CLTRAP UN ECE Convention on Long Range Transboundary Air Pollution
Critical level A pollutant concentration level in air below which significant

adverse impacts on vegetation are not expected.

Critical load A level of deposition below which significant adverse impacts on
ecosystems are not expected

EMEP Protocol on long-term financing of the co-operative programme
for monitoring and evaluation of long-range transmission of air

Drucksache 16/1814 – 82 – Deutscher Bundestag – 16. Wahlperiode

pollutants in Europe

Eutrophication Excess nutrient nitrogen (mainly in the form of ammonia or
nitrogen oxides) can lead to changes in the composition of
ecosystem communities and a loss of biodiversity.

GEM-E3 General equilibrium macro-economic model – Economy, Energy
& Environment

Ground-level ozone (O3) Ozone formed in the lowermost part of the atmosphere from the
reaction of nitrogen oxides and volatile organic compounds in the
presence of sunlight. Ozone is a strongly oxidising gas.

IA Impact Assessment
IAM Integrated Assessment Modelling
IIASA International Institute of Applied Systems Analysis
IPPC Integrated pollution prevention and control (Directive 96/61/EC)
LRS Lower respiratory symptoms
MRAD Minor restricted activity day
MTFR Maximum Technically Feasible Reduction
National emission
ceiling

The maximum amount of a substance expressed in kilotonnes that
may be emitted by a Member State in a particular calendar year.

NECD National Emissions Ceiling Directive
NewExt New Elements for the Assessment of External Costs from Energy

Technologies

Nitrogen oxides (NOx) The gases nitric oxide (NO) and nitrogen dioxide (NO2). NO is
predominantly formed in high temperature combustion processes
and can subsequently be converted to NO2 in the atmosphere.

PM10, PM2.5 Particulate matter in ambient air with a diameter less than 10 or
2.5 millionths of a metre respectively.

PRIMES Energy model
RAD Restricted activity day
RAINS Regional Acidification Information Simulation Integrated

Assessment Model

SCHER Scientific Committee on Health and Environmental Risks
SCNR Selective Non-Catalytic Reduction
Secondary pollutant Secondary pollutants are not emitted directly but are formed by

subsequent chemical processes in the atmosphere. Examples
include ground-level ozone, and nitrate and sulphate aerosols.

Strategy Thematic Strategy on Air Pollution
SOMO35 Sum of daily maximum ozone concentrations above a threshold of

35 ppb (70 µg/m3)

Deutscher Bundestag – 16. Wahlperiode – 83 – Drucksache 16/1814

Sulphur dioxide (SO2) Gas formed from the combustion of fuels which contain sulphur.
Transboundary air
pollution

Pollutants emitted in one country are transported in the
atmosphere and may contribute to adverse health and
environmental impacts in other countries.

Volatile Organic
Compounds (VOC)

VOC are volatile carbon-based chemical compounds (such as
solvents or components of paints and varnishes) which are emitted
to the atmosphere from natural sources or as a result of human
activities.

VOLY Value of life year
VSL Value of statistical life
WGI Working Group on Implementation
WG PM Working Group on Particulate Matter
WG TSPA CAFE Working Group on Target Setting and Policy Assessment
WHO The World Health Organization
YOLL Years of life lost

Drucksache 16/1814 – 84 – Deutscher Bundestag – 16. Wahlperiode

SUMMARY
PART ONE - IMPACT ASSESSMENT ON THE THEMATIC STRATEGY ON AIR POLLUTION

The objectives

The Sixth Environment Action Programme (6th EAP) is a programme of Community
action on the environment with key objectives covering a period of ten years. The
priorities of the 6th EAP cover climate change, nature and biodiversity, environment,
health and quality of life, and natural resources and waste. Within these key
priorities, the 6th EAP calls for the development of seven thematic strategies
including a coherent and integrated strategy on air pollution.

The Thematic Strategy on air pollution is to present a coherent and integrated policy
on air pollution which: (1) sets out priorities for future action; (2) reviews existing
ambient air quality legislation and the National Emission Ceilings Directive with a
view to reaching long-term environmental objectives; and (3) develops better
systems for gathering information, modelling and forecasting air pollution.

The 6th EAP establishes the objective of achieving levels of air quality that do not
give rise to significant negative impacts on and risks to human health and the
environment. This includes no exceedence of critical loads and levels for natural
ecosystems (a critical load being a level of exposure below which there is not
expected to be any risk).

Air pollution is complex. There are local components and transboundary
contributions to observed effects. Several pollutants contribute to the same or
multiple effects and pollutants interact. Moreover, there are prominent synergies and
tensions between air pollution and other environmental problems such as climate
change. These issues must be addressed in a systematic and cross-cutting way so that
benefits can be maximised. The Thematic Strategy on air pollution is built upon an
integrated assessment of different environmental and health effects and aims to
provide the most cost-effective solution for the chosen level of objectives.

The Strategy assesses the prospects for making further progress towards the
objectives set out in the 6th EAP. It considers the economic, social and environmental
dimensions in an integrated and balanced manner.

Development of the Thematic Strategy and Stakeholder Consultation

In its Communication on the Clean Air For Europe (CAFE) Programme: Towards a
Thematic Strategy for Air Quality the Commission set out its intention to develop the
Thematic Strategy based upon sound technical information. The CAFE Programme
was set up to develop, collect and validate scientific information about air pollution
with the aim of reviewing current policies and assessing progress towards long-term
objectives. It established five working groups to provide assistance and advice (see
box below).

There were over one hundred stakeholder meetings during the CAFE programme

including conferences to disseminate results, to share experiences on the use of
different policy instruments (including economic instruments), and to discuss issues

Deutscher Bundestag – 16. Wahlperiode – 85 – Drucksache 16/1814

relating to the implementation of current air quality legislation. In addition, there was
a two-month “non-expert” web-based public consultation on the content and
objectives of the Thematic Strategy. Of the 11,578 responses received, over 10,000
were from private individuals. Respondents indicated a clear need for better public
information, a greater desire for protection from air pollution and a willingness to
pay for reduced risks on a par with those for drinking water.

As well as the various working groups, the Commission launched several contracts
for services during the CAFE Programme. The total value of these contracts and
agreements amounted to several million euros. The most important of these are listed
below.

Working Groups under the Clean Air For Europe Programme
• The CAFE Steering Group;
• The Target Setting and Policy Assessment Working Group (TSPA);
• The Technical Advisory Group (TAG);
• The Working Group on Particulate Matter (WGPM);
• The Working Group on Implementation (WGI).

The Steering Group was and continues to be the main forum for stakeholder participation
on air pollution issues. Members include representatives of the Member States, several
industry sectors (energy production, petroleum, VOC industries, automotive sector and
general industry), environmental NGOs, EEA countries, the European Environment
Agency, the Joint Research Centre and the CLRTAP. The Steering Group met fourteen
times during the four years of the CAFE programme.

The TSPA included selected experts from the Member States, industry, NGOs, the
European Environment Agency and the JRC. Its role was to assist the Commission in
managing the technical service contracts that were launched to provide information on the
development of cost-effective control strategies and to estimate health benefits. The
TSPA’s main role was to provide feedback on the environmental targets to be used in
developing cost-effective control strategies using the RAINS integrated assessment
model. The TAG was a forum for different modelling groups to discuss and give advice
on technical and scientific issues relating to the analyses undertaken.

The WGPM was convened to review the latest health evidence and scientific information
regarding the effects and presence of particulate matter in ambient air and to make
recommendations for modifications to existing legislation. The WGPM was led by experts
from the UK and Germany. The WGI was convened by the Commission to gather and
report on the implementation of existing air quality legislation and to report to the
Commission on potential modifications and improvements. Its members consisted
primarily of experts from the Member States.

Drucksache 16/1814 – 86 – Deutscher Bundestag – 16. Wahlperiode

An overriding principle of the CAFE programme was to ensure that the analyses were
conducted on the basis of the best available information. It is for this reason that the
main analytical tools (the RAINS integrated assessment model and the cost-benefit
methodology) were both subject to independent peer-review before being used to
develop and analyse policy scenarios. In addition, the World Health Organisation was
asked to provide its best information on the impacts of air pollutants on health.

The problem

The main sources of air pollution are transport, power generation, industry,
agriculture, and heating. All these sectors emit a variety of air pollutants - sulphur
dioxide, nitrogen oxides, ammonia, volatile organic substances, and particulate
matter – many of which interact with others to form new pollutants. These are
eventually deposited and have a whole range of effects on human health,
biodiversity, buildings, crops and forests.

Air pollution results in several hundreds of thousands of premature deaths in Europe
each year, increased hospital admissions, extra medication, and millions of lost
working days. The health costs to the European Union are huge. While the
environmental damage through acidification of ecosystems and damage to crops and
forests is impossible to quantify, it is likely to be substantial as well. The pollutants
of most concern for human health are airborne particulates and ozone – indeed no

Service contracts launched under the CAFE Programme
(1) Energy Baseline Scenarios for the Clean Air For Europe Programme (CAFE) –

service contract to verify consistency between air quality and climate change
policies in the CAFE baseline scenarios, National Technical University of
Athens, Contract N° 070501/2004/377552/MAR/C1;

(2) Baseline Scenarios for the Clean Air For Europe (CAFE) Programme. Service
contract for the development of the baseline and policy scenarios and integrated
assessment modelling framework for the CAFE programme, International
Institute for Applied Systems Analysis, Contract N° B4-
3040/2002/340248/MAR/C1;

(3) Service Contract for Carrying Out Cost-Benefit Analyses of Air Quality Related
Issues, in particular in the Clean Air For Europe (CAFE) Programme; AEA
Technology plc, Contract N° ENV.C.1/SER/2003/0027;

(4) Service Contract for the Review of the RAINS Integrated Assessment Model;
The Swedish Environmental Research Institute & AEA Technology plc,
Contract N° ENV.C1/SER/2003/0079;

(5) Peer-Review of the Methodology of the Cost-Benefit Analysis of the Clean Air
For Europe Programme; Alan Krupnick (editor), Bart Ostro and Keith Bull,
October 2004, (under contract N° 070501/2004/382805/MAR/C1);

(6) Systematic Review of Health Aspects of Air Pollution in Europe, European
Centre for Environment & Health of the World Health Organisation (Bonn),
Grant agreement 2001/321294.

(7) Assessment of the effectiveness of European Air Quality Policies and Measures;
Millieu Ltd, Contract N° B4-3040/2003/365967/MAR/C1.
safe levels have yet been identified for either.

Deutscher Bundestag – 16. Wahlperiode – 87 – Drucksache 16/1814

Particulates consist of the “primary” particles emitted directly into the atmosphere
from certain processes and “secondary” particles (or “aerosol”). The latter are
emissions of gaseous pollutants, such as sulphur dioxide (SO2), nitrogen oxides
(NOX) and ammonia (NH3), which are altered through chemical reaction in the
atmosphere and add to the particulate mass. Particulates in ambient air are classified
according to size, so PM10 and PM2.5 refer to all particles with diameter less than 10
micrometers (the “coarse” fraction) and 2.5 micrometers (the “fine” fraction)
respectively. Fine particles tend to originate more from human activities than coarse
particles.

Ozone occurs naturally in the stratosphere and in the troposphere, but is formed by
very different chemical processes. Ozone in the stratosphere is valuable as it protects
us from harmful ultraviolet radiation, but tropospheric ozone near ground level is
harmful to ecosystems and human health. Ground-level ozone is formed in the
atmosphere by reaction between volatile organic compounds (VOC) and NOX in the
presence of sunlight. The VOC come from petrol stations, car exhausts, and the use
of solvents and paints.

In the environment, emissions of SO2, NOX and NH3 contribute to the acidification
of lakes, rivers, forests and other ecosystems, although it is possible to identify a
“critical load” below which the ecosystem is not expected to be at risk. But after
fauna and flora are lost it may take several decades for an ecosystem to recover, even
when acidifying inputs are reduced to sustainable levels. Excess nitrogen from NOX
and NH3 can lead to eutrophication, while ground-level ozone can damage forests,
crops and vegetation. Ozone damage is the most serious regional air pollution
problem affecting agriculture in Europe. Air pollution also has an impact on
materials, buildings and cultural heritage.

The approach

The present document explains how the Strategy was build up, the options chosen or
discarded and the costs and benefits of each of them. It assesses the impact of the
Strategy based on the best scientific understanding of emissions, atmospheric
transport, and the human health and environmental impacts of air pollution. It
concentrates on the five major impacts of the five major pollutants shown in this
table.

Multi-pollutant/multi-effect approach of the Strategy

Primary PM SO2 NOx VOC NH3

Health effects:

- Particulate matter √ √ √ √ √

- Ground-level ozone √ √

Vegetation effects:

- Ground-level ozone √ √

- Acidification √ √ √
- Eutrophication √ √

Drucksache 16/1814 – 88 – Deutscher Bundestag – 16. Wahlperiode

The method used for the Strategy was first to establish a baseline showing air
pollution up to 2020 if no extra measures or additional legislation are implemented.
This was then set against Community long-term objectives of achieving levels of air
quality that do not give rise to significant negative impacts on and risks to human
health and the environment. This includes no exceedence of critical loads and levels
for natural ecosystems. Then, various scenarios were examined to close the “gap”
between the baseline and the achievement of the long terms objectives. On the basis
of cost-effectiveness and cost/benefit analysis interim objectives for the Strategy
have been set. Peer reviews and sensitivity analyses were used to minimise
uncertainties in modelling, assumptions, and assessments of alternative strategies.

The baseline

The baseline scenario takes account of the effects of emissions control legislation,
against the background of future economic development. The baseline scenario is
sometimes called also the “business-as-usual” or “current legislation” scenario.
Existing legislation – e.g. on cars, large combustion plants, fuel quality, the VOC
content of products, emission limits for major pollutants – will deliver reductions in
emissions of most air pollutants (SO2, NOX and VOC) in the 25 Member States of the
European Union, in a context of economic growth. The exception is ammonia
emissions, although the recent reforms of the Common Agricultural Policy should
bring considerable improvements. Emissions of all particulates should also continue to
decline, but background concentrations of ozone will increase and are of concern.

The relationship between the decrease of primary pollutant emissions and the
improvement of air quality is not straightforward. Air quality is affected not only by
local emissions, but also by interactions between these pollutants, their long-range
transport in the atmosphere, natural emissions and meteorological conditions. So the
picture varies across the EU.

In the natural environment it is possible to determine “critical loads” for individual
ecosystems, namely sustainable levels of deposition above which the ecosystem will
be at risk of harmful effects. For human health, the situation is more complex as no
safe levels of exposure have yet been identified for some pollutants, such as
particulate matter and ground-level ozone.

The improvements in pollutant emissions, health impacts from air pollution across the
EU are therefore still projected to be considerable in 2020. The effects on life
expectancy of exposure to particulates (estimated at over 300 000 premature deaths
equivalent a year in 2000) are expected to be much greater than those associated with
ozone (some 21 000 premature deaths). Total health damage costs – including illness –
associated with particulate matter and ozone are estimated to be between €189 billion
and €609 billion per annum in 2020.

The options

Since by 2020 the EU will still be a long way from achieving the two objectives of the
6th EAP with current legislation, further action is required. To help decide on the costs
and benefits of different levels of action, various options were considered with

reference to a scenario whereby all possible emissions abatement measures are
deployed irrespective of cost. This is called the “Maximum Technically Feasible

Deutscher Bundestag – 16. Wahlperiode – 89 – Drucksache 16/1814

Reduction” (MTFR) scenario, but even if the EU undertook all measures available,
irrespective of costs, there would still be significant negative impacts on health and the
environment.

So, various options between the baseline and the MTFR scenario were assessed to
establish interim environment objectives that deliver progress in a balanced and cost-
effective way. At the outset, and following discussion and advice from the Working
Group on Target Setting and Policy Assessment, three different levels of ambition1
were considered in four areas, combining the health-related PM2.5 and ozone
objectives with those of environmental protection for acidification and eutrophication
as shown in the table below

Scenarios considered in the Thematic Strategy

2000 Baseline 2020
Scenario

A
Scenario

B
Scenario

C MTFR
2

EU-wide cumulative
years of life years lost
(YOLL, million)

203 137 (0%)
110

(65%)
104

(80%)
101

(87%)
96

(100%)

Acidification (country-
wise gap closure on
cumulative excess
deposition)3

120 30(0%)
15

(55%)
11

(75%)
10

(85%)
2

(100%)

Eutrophication
(country-wise gap
closure on cumulative
excess deposition)4

422 266 (0%)
173

(55%)
138

(75%)
120

(85%)
87

(100%)

Ozone (gap closure on
SOMO35)5 4081

2435
(0%)

2111
(60%)

2003
(80%)

1949
(90%)

1895
(100%)

Impact assessment of the options

The three scenarios between the baseline and the maximum technically feasible
reduction were subjected to a full cost-benefit analysis, together with analysis of
impacts on competitiveness and employment. The analysis focuses on the most
significant impacts and the most important distributive effects, and the depth of
analysis matches the significance of the impacts.

The reduction in pollutant emissions for each ambition level is not homogeneous
across pollutants and Member States. For example, it can be seen from the table below
that under Scenario B, SO2 emissions would be reduced by a further 44% from where
they would be with current legislation in 2020, but NOX emissions by only 272%.
1 The assessment focuses on the range between 50% and 100% of MTFR, as control costs started to

increase significantly at about 75% between the baseline and MTFR in 2020.
2 The percentage refers to the difference between Baseline 2020 and Maximum Technically Feasible
Reduction (MTFR)
3 Average accumulated excess acidification equivalents per hectare
4 Average accumulated excess eutrophication equivalents per hectare
5 SOMO35 in parts per billion days

Drucksache 16/1814 – 90 – Deutscher Bundestag – 16. Wahlperiode

Emission reductions for the three ambition levels in 2020 (in kilotonnes)

Baseline Ambition level in 2020

2000 2020 Scenario A Scenario B Scenario C

SO2 8735 2805 1704 1567 1462

NOx 11581 5888 4678 4297 4107

VOC 10661 5916 5230 4937 4771

NH3 3824 3686 2860 2598 2477

PM2.5 1749 964 746 709 683

The direct costs of these measures have been calculated at between €5.9 billion for
Scenario A and €14.9 billion for Scenario C. The tables show a preliminary estimate
of costs by pollutant and by major source for 2020.

Abatement costs by pollutant in 2020 (€ million per year)

Ambition level

Pollutant Scenario A Scenario B Scenario C MTFR

SO2 800 1,021 1,477 3,124

NOx 903 2,752 4,255 6,352

NH3 1,785 3,770 5,410 13,584

Primary PM2.5 411 695 908 12,335

VOC 157 573 935 2,457

PM2.5 and NOx from road transport 1,868 1,868 1,868 n/a

Total 5,923 10,679 14,852 over 39,720

Abatement costs by sector in 2020 (millions of euros per year)

0

2000

4000

6000

8000

10000

12000

14000

16000

Scenario A Scenario B Scenario C

M
ill

io
n

€/
ye

ar

Agriculture (animals)

Agriculture (crops)

Small Combustion Plants

Large Combustion Plants (industry)

Large Combustion Plants (power and heat)

Transport

Fuel production and conversion

Other industrial process and waste
Deutscher Bundestag – 16. Wahlperiode – 91 – Drucksache 16/1814

Health benefits of the different policy options have been assessed using the
methodology outlined in Section 2.3 and given in detail in the CBA methodology
reports. The major monetised benefits of policy options would come from reduced
premature deaths and reduced loss of life expectancy. Also benefits from reduced
morbidity contribute significantly to the overall benefits, although it must be kept in
mind that the basis of evidence for quantifying the most influential morbidity health
endpoints is more limited than for mortality.

A way of defining the optimal ambition level would be to compare the cost per life
year saved against the marginal benefit of a life year saved. This balance should be
limited to the costs for reducing PM2.5 concentration only (therefore excluding
additional costs linked with acidification, eutrophication and ground-level ozone
targets), with the monetary valuation of both mortality and morbidity effects due to
reduced PM2.5 concentration. The optimum is the point where marginal costs and
marginal benefits are equalized. The reason is that at this point the total benefits
minus the total costs (i.e. the net benefits) are maximised. Such an analysis was
carried as part of this impact assessmentThis happens (see figure) beyond Scenario
B. It should be noted, though, that with different assumptions of the value of
statistical life, a higher ambition level could be justified.

For environmental benefits, a comparative analysis was made of the impacts of
reduced air pollution on ecosystems, using a precise ecosystem-specific deposition
methodology. For acidification, although improvements are expected following the
present environment policies, but major problems would remain in areas with
sensitive ecosystems and high emissions. Regarding eutrophication, the scenarios
would reduce the area with excess deposition of nitrogen above the critical load, but
substantial and severe eutrophication problems would remain in many Member
States. As there is still no sound basis at present for further quantification impacts
and valuation of impacts on different types of ecosystems, omission of monetised
ecosystem benefits outside of agriculture6 may trigger a significant bias towards
underestimation of total benefits and further research will be undertaken. There will
also be benefits in other environmental areas. There are linkages and overlaps with
climate change policy, and air pollution directly affects soil and water quality.

Economic and social impacts

The macro-economic effects of the options, as estimated using the GEM-E3 general
equilibrium model,7 do not appear to be significant: The costs of meeting Scenarios
A, B and C were estimated at 0.04%, 0.08% and 0.12% of EU-25 GDP in 2020
respectively The Strategy has very little impact on overall employment. There are
some sectoral shifts and some differences between Member States. However, they
cancel each other out. There would be a small positive impact to exports. However,
imports are estimated to grow more, mainly due to the terms of trade effect.
6 Damage to crops (mainly wheat yield loss) from ozone would be reduced by 0.3-0.5 billion euros in

2020.
7 The model was developed with the support of the 5th Research Framework Programme and is currently

being used to develop the modelling capability of the Commission in the IQ-TOOLS project under the

6th Framework Programme.

Drucksache 16/1814 – 92 – Deutscher Bundestag – 16. Wahlperiode

Macroeconomic impacts of three scenarios compared to baseline in 2020
Scenario A Scenario B Scenario C

Gross Domestic Product -0.04% -0.08% -0.12%
Employment 0.00% 0.00% 0.00%
Private consumption -0.06% -0.13% -0.20%
Investment -0.01% -0.02% -0.03%
Final energy consumption -0.12% -0.24% -0.34%
Exports to rest of the world 0.00% 0.01% 0.02%
Imports from rest of the world 0.04% 0.10% 0.15%
Real wage rate -0.04% -0.09% -0.14%
Relative consumer price 0.00% 0.00% 0.00%
Real interest rate 0.01% 0.02% 0.03%
Terms of trade 0.04% 0.08% 0.12%

These calculations do not take into account efforts to improve the environment in
non-EU industrialised and developing countries and the increased compliance costs
and the demand for technologies to reduce air pollution. These factors would
contribute to enhancing the competitiveness aspects for European industry.

Indeed, other developed countries, such as the USA8 and Japan, have similar or more
stringent air pollution policies in place. Moreover, awareness of air pollution issues
is increasing in developing countries, such as China9 and India, and measures to
improve environmental performance are being implemented.

By focusing research and development on the resource-efficient and less polluting
technologies that other countries will eventually need to adopt, the EU can gain
advantages in terms of innovation, business opportunities and export potential.
Reducing damage to human health and the environment could help improve the EU’s
competitiveness.

Conclusion: Proposed interim objective up to 2020

All scenarios deliver benefits far in excess of costs. However, the additional costs
relative to benefits start to increase steeply at around the mid range (Scenario A/B).
Furthermore, the changes in ecosystem improvements between the lower (Scenario
A) and mid range scenario (Scenario B), balanced against costs, argue in favour of
choosing a level between the low and mid range that delivers the lowest levels of air
pollution that can be justified in terms of benefits and costs while preventing undue
health risks for the population. It should also be noted that the largest improvements
are estimated to materialise from moving from the baseline to Scenario A. The costs
of moving from Scenario A to B are estimated almost to double and increase further
8 The recent air pollution laws, such as the “Clean Air Interstate Rule”, which are comparable to the

interim objectives in the Strategy, are estimated to cost for transport and power generation sectors alone
in the US between $12 and $14 billion per annum.

9 For instance, practically all newly built and expanded coal-fired units must install flue gas
desulphurization units to meet new Chinese emission limit values. From 2007 all new cars sold in China
must meet “Euro 3” emission limit values and the feasibility of raising this requirement to “Euro 4”

from 2010 is being evaluated. In sum, the Chinese policies to reduce SO2 and NOx emissions are
similar to those of the EU and trailing by about 5 to 10 years.

Deutscher Bundestag – 16. Wahlperiode – 93 – Drucksache 16/1814

by about €4 billion in Scenario C for relatively small additional benefits. This is why
the Commission is proposing an ambitious, yet prudent, approach to setting
environment and health objectives for 2020 coupled with a review in about five years
from the adoption of the Strategy. The alternative environmental interim objectives
up to 2020 and the proposed Strategy are given in the table below.

Alternative environmental interim objectives up to 2020
Human health Natural environment

Ecosystem area exceeded
acidification
(000 km2)

Ambition
level

Cost of
reduction

(€bn)

Life
Years

Lost due
to PM2.5
(million)

Premature
deaths due
to PM2.5

and ozone
(thousands)

Range in
monetised

health
benefits10

(€bn)
Forests Semi-natural

Fresh-
water

Ecosystem
area

exceeded
eutrophicat-

ion
(000 km2)

Forest
area

exceeded
ozone

(000 km2)

2000 3.62 370 - 243 24 31 733 827
Baseline
2020

2.47 293 - 119 8 22 590 764

Scenario A 5.9 1.97 237 37 – 120 67 4 19 426 699

Scenario B 10.7 1.87 225 45 – 146 59 3 18 375 671

Scenario C 14.9 1.81 219 49 – 160 55 3 17 347 652

MTFR 39.7 1.72 208 56 – 181 36 1 11 193 381

Strategy 7.1 1.91 230 42 – 135 63 3 19 416 699

Note: Ecosystem benefits and the damage to materials and buildings have not been monetised but still need to be
considered. MTFR is the Maximum Feasible Technical Reduction and includes the application of all possible
technical abatement measures irrespective of cost. Only costs and benefits of moving beyond the baseline are
presented. Lower value is based on the median of the value of a life year lost (VOLY) & higher value is based on
mean value of a statistical life (VSL). Costs and benefits are annual amounts. In addition to the benefits the
damage to agricultural crops is around €0.3-0.5 billion lower in 2020 under scenarios A-C.

This level of ambition will entail improvements by 2020 relative to 2000 of:

– 47% in life expectancy lost from exposure to particulate matter

– 10% fewer cases of acute mortality from exposure to ozone

– 74% less forest area and 39% less freshwater area where acidification critical
loads are exceeded

– 43% less area where critical loads for eutrophication are exceeded

– 15% less forest area where critical levels are exceeded due to ozone
10
Lower value is based on the median of the value of a life year lost (VOLY) and higher value is based

on mean value of a statistical life (VSL).

Drucksache 16/1814 – 94 – Deutscher Bundestag – 16. Wahlperiode

Changes in loss of life expectancy in the EU in 2000 and in the interim objective in 2020
(Strategy)

2000 Strategy in 2020

Percentage of total ecosystems area receiving nitrogen deposition above the critical loads
in 2000 and in the proposed interim objective for eutrophication in 2020

2000 Strategy in 2020

These improvements will require by 2020 emission reductions in the EU-25 of 82%
for SO2, 60% for NOx, 51% for VOCs, 27% for NH3 and 59% for primary PM2.5
relative to emissions in 2000. The following graph illustrates the reduction
requirements and shows to what extent the reductions are due to current legislation
being implemented up to 2020.

Deutscher Bundestag – 16. Wahlperiode – 95 – Drucksache 16/1814

Improvement of health & environment indicators following the Strategy

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Health (PM2.5)

Health (ozone)

Forest acidification

Ecosystem acidification

Freshwater acidification

Eutrophication

Forest damage (ozone)

Current legislation
Further improvement

The level of ambition chosen for this Strategy has been estimated to deliver at least
€42 billion per annum of benefits in monetary terms representing between 0.35-1.0%
of the EU-25 GDP in 2020. These benefits include fewer premature deaths, less
sickness, fewer hospital admissions, improved labour productivity etc. Although
there is no agreed way to monetize ecosystem benefits, the environmental benefits of
reduced air pollution will be significant. In addition, damage to buildings and
materials will also be reduced. Similarly, for agricultural crops the damage would be
reduced by around €0.3 billion per annum.

Attainment of these targets is estimated to cost approximately €7.1 billion per annum
representing about 0.05% of the EU-25 GDP in 2020, though no net change in
employment is expected. Production lost through ill health would be reduced. Low
income groups generally exposed to the highest levels of air pollution may benefit
most.

The chosen level of ambition represents an optimal balance between economic and
environmental goals, contributing to Lisbon and the Community’s Sustainable
Development Strategy objectives.

Drucksache 16/1814 – 96 – Deutscher Bundestag – 16. Wahlperiode

Measures and instruments

The impact assessment of the different options is based on the analysis of a set of
technological measures with the RAINS model. The level of ambition of the
Strategy, is based on a set of specific measures which would need to be undertaken at
Community and Member State level. These possible measures – in addition to
current legislation – relative to the main pollutants are outlined below:

– to reduce SO2 emissions: the use of low–sulphur heavy fuel oils; flue gas
desulphurisation; reducing the sulphur content of fuels;

– to reduce NOx emissions: modifications to domestic and industrial combustion
plant including selective catalytic reduction; bans on open burning of waste;

– to reduce PM2.5 emissions: using cyclones and fabric filter dedusters for boilers in
the commercial sector and new residential boilers;improvements to diesel
vehicles;

– to reduce NH3 emissions: reducing nitrogen content in animal feed; fertilizer
substitution; low-emission housing for poultry; more use of low-ammonia
application measures for pig and cattle manures;.

– to reduce VOC emissions: control of fugitive losses in the chemicals industry and
in refineries; control of the use of paints and solvents.

In order to attain the strategic objectives defined above, current air quality legislation
will be simplified and other legislation revised where appropriate. Further initiatives
will be taken on new vehicles and, subject to careful impact assessment, new
measures may be envisaged for small combustion plants, ships and aircraft
emissions. Community structural funds, international cooperation and improved
implementation will all form part of the suggested policy mix. Finally, it is clear that
other sectors – like agriculture, energy and transport – will have to be involved with
some of these measures. Recent reform of the Common Agricultural Policy should
bring about a reduction in emissions from agricultural sources. In keeping with the
commitments made in the White Paper on a common transport policy, the
Commission will further encourage shifts towards less polluting modes of transport,
alternative fuels, reduced congestion and the internalisation of externalities into
transport costs.

Deutscher Bundestag – 16. Wahlperiode – 97 – Drucksache 16/1814

PART TWO - IMPACT ASSESSMENT OF THE PROPOSED DIRECTIVE ON “AMBIENT AIR
QUALITY AND CLEANER AIR FOR EUROPE”

In order to improve the regulatory framework on air quality in line with the
Commission’s Strategic Objectives 2005-2009 calling for Better Regulation, it is
indispensable to modernise and simplify current air quality legislation – and to
reduce its volume – in order to improve the competitiveness of the European
economy.

Better regulation – cutting red tape and streamlining legislation

Therefore, the Commission proposes to combine the Framework Directive,11 the
First,12 Second13 and Third14 Daughter Directives, and the Exchange of Information
Decision15 into one Directive on “Ambient Air Quality and Cleaner Air for Europe”.
This will cut red tape, clarify and simplify ambiguous provisions, repeal obsolete
provisions, modernise and reduce reporting requirements, and introduce new
provisions on fine particulates. The Fourth Daughter Directive16 will be merged later
through a simplified “codification” process. While the impacts of this modernisation
and simplification exercise cannot be quantified in monetary terms, it is certain to
have positive effects on competitiveness by reducing bureaucracy and increasing
transparency.

Addressing specific implementation problems

It is necessary to address some implementation problems that have occurred with
current air quality legislation. The Commission proposes to allow Member States to
request an extension to extend the deadline for compliance in affected zones if
objectively verifiable conditions are met, including information on the compliance
with certain Community legislation contributing to improvement of air quality. As a
quid pro quo the Member State would have to develop and implement an air
pollution abatement programme to ensure that the limit values are attained upon
expiry of the extension. It has not been possible to quantify the impact of this
proposal, which is a “safety valve” against unduly high abatement costs in
exceptional situations.

Modernising reporting requirements

It is also necessary to bring the reporting requirements for air quality into the 21st
century by using the internet as the main means of delivery and making this
compatible with INSPIRE.17
11 Council Directive 96/62/EC OJ L 296, 21.11.1996, p. 55
12 Council Directive 1999/30/EC OJ L 163, 29.6.1999, p.41
13 Directive 200/69/EC OJ L 313, 13.12.2000, p. 12
14 Directive 2002/3/EC OJ L 67, 9.3.2002, p.14
15
Council Decision 97/101/EC O.J. L 35, 5.2.1997, p. 14
16 Directive 2004/107/EC OJ L 23, 26.1.2005, p. 3
17 Proposal for a Directive of the European Parliament and of the Council establishing an infrastructure for

spatial information in the Community (INSPIRE) COM(2004) 516 final, SEC (2004) 980.

Drucksache 16/1814 – 98 – Deutscher Bundestag – 16. Wahlperiode

In the light of recent health evidence, the Commission is proposing the following approach.

No change in current limit values

Based on the advice received from the scientific community – WHO ’Systematic
review on air pollution health aspects in Europe’ and the Commissions’ Scientific
Committee on Health and Environmental Risks – the Commission is not proposing to
revise the current limit and target values for air pollutants set by European air quality
legislation. However, the Commission proposes to repeal the indicative limit value of
PM10 for 2010 and – on the basis of scientific advice and health evidence – to start
regulating fine particulate matter below 2.5 microns (called PM2.5) differently.

Reducing annual average urban background concentrations of PM2.5 between 2010 and 2020

The latest scientific evidence confirms that PM2.5 is responsible for significant
negative effects on human health, and thus leads to substantial loss of life by
European citizens. Further, there is no identifiable threshold below which particulate
matter would not pose a risk to human health. Because of this evidence, it is vital to
regulate fine particulate matter differently from some other air pollutants. The
Commission considers that the proposed effective and proportional approach –
namely reduction of the average annual urban background concentration of PM2.5 –
is justified

The Commission proposes a two-stage approach by first setting a concentration
reduction target of 20% between 2010 and 2020 for PM2.5. Based on actually
monitoring data of 2008-2010 the Commission would secondly propose a legal
requirement each Member State to reduce average annual urban background
concentrations of PM2.5 by a definited minimum percentage between 2010 and 2020
possibly calculated for each microgram per cubic metre of PM2.5 measured in the
baseline concentration. It also proposes that average annual urban background
concentrations be calculated as a three-year running average – starting from the
period between 2008 and 2010, thus moderating the impact of meteorological
variability. The reduction would be based upon the arithmetic (or population
weighted, if data allows) mean of all measurements of PM2.5 concentrations made in
urban background locations in the territory of the individual Member State. The
reduction requirement is described in detail in Section 7.4 of the Impact Assessment.

Benefits and costs of regulating PM2.5 at EU level

The benefits of the Commission’s proposal to require a reduction of the average
urban background concentration, between 2010 and 2020, between €37 billion and
€119 billion per annum in 2020. These are between seven and 24 times higher than
the estimated costs of between €5 and €8 billion per annum.

Capping unduly high risk

The Commission also proposes a “cap” of 25 micrograms per cubic metre expressed
as an annual average to be attained by 2010. The level of the cap is such as to be
entirely consistent with the existing limit value for PM10, so Member States are not

expected to incur any additional burden. The cap will apply throughout the territory
of the Member States.

Deutscher Bundestag – 16. Wahlperiode – 99 – Drucksache 16/1814

The main justification for proposing the “cap” is to ensure that there are no
unintended consequences of reducing PM2.5 average concentrations. No European
should be exposed to unduly high levels of PM2.5 concentrations.

Follow-up: New proposals to reduce emissions

Since a large fraction of air pollution – including the precursors to PM2.5
concentrations – travels very long distances, the Commission intends to make
legislative proposals in the near future to reduce the transboundary component of
urban background concentration of PM2.5. These measures include reviewing
emissions limits for light- and heavy-duty vehicles (e.g. to go beyond current Euro
standards) and revision of the National Emission Ceilings for 2015 or 2020 in order
to reduce urban background concentrations of PM2.5 consistent with the proposed
new way of regulating PM2.5.

MONITORING, EVALUATION AND CONSULTATION

The EEA and Eurostat have developed indicators to monitor the impacts of air
emissions on human health and the environment, and there will be long-term
monitoring under the UNECE Convention on Long-range Transboundary Air
Pollution. Monitoring, modelling, assessment and mapping will follow agreed
methodologies. Since Community air pollution policy is built on robust scientific and
technical knowledge, continual further research will be needed to refine current and
future policies and measures. Our understanding of adverse health and environmental
impacts is improving all the time, so it is important to keep targets and policies under
review, and to take account of changes in the costs and effectiveness of measures.
The Commission plans to carry out a first review in about five years from the
adoption of the Strategy.

Public consultation has shown that more than half of Europeans are worried about air
pollution, particularly its impacts on the environment and health. They attach a high
priority to improving air quality and call for a level of environmental ambition
resembling Scenario C. The international and European levels were seen as the most
appropriate for taking action. Respondents identified industrial production and traffic
most often as the targets for measures. They were also prepared to take individual
action themselves and to pay to improve air quality.

These results were taken into account in the Strategy, particularly when defining the
environmental ambition level, when developing the health and environment
objectives, and when identifying measures to simplify legislation and improve
information to the public.

In addition to consultation of stakeholders and the public, internal consultation
between the various Commission services has been a regular feature of the
preparation of the Strategy.

Drucksache 16/1814 – 100 – Deutscher Bundestag – 16. Wahlperiode

1. INTRODUCTION

This Impact Assessment (IA) describes the options considered in developing the
Thematic Strategy on Air Pollution (“the Strategy”) and justifies the choices
presented in the Strategy and in the Commission’s proposal to revise the air quality
framework directive,18, the first three daughter directives19 and the Council decision
on the exchange of air quality information20 (“the Air Quality Proposal”). The
Strategy is part of the Sixth Community Environment Action Programme21
(6th EAP), which sets objectives for action and several thematic strategies to address
important aspects of the environment. The EAP lays down the objective for the
Strategy as “achieving levels of air quality that do not give rise to significant
negative impacts on and risks to human health and the environment”.

This assessment follows closely the Impact Assessment Guidelines of the
Commission22 and considers the economic, social and environmental dimensions in
an integrated and balanced manner. The guidelines emphasise the need to
concentrate on those impacts that are likely to be the most significant and/or will lead
to important distributive effects. The analysis presented here is consistent with these
principles and is proportionate to the nature of the proposal

The problem of air pollution and the trends in emissions and impacts foreseen up to
2020 are described in Chapter 2. Chapter 3 examines the long-term objectives
defined by the 6th EAP, and Chapter 4 describes the process used for the definition
of a set of policy options corresponding to interim levels of ambition for air quality
by 2020. Chapter 5 provides a detailed assessment of the environmental, economic
and social implications of each level of ambition. Chapter 6 describes the measures
that would have to be implemented for each level of ambition. The impact
assessment for the legislative proposal accompanying the Thematic Strategy (revised
directives on ambient air quality) is presented in Chapter 7. Chapter 8 details the
monitoring and evaluation implications of the Thematic Strategy, and Chapter 9
reports on the stakeholder and public consultation undertaken for the definition and
evaluation of the Thematic Strategy.

The assessment is underpinned by a substantial body of knowledge generated by
Commission service contracts, studies, health advice from the World Health
Organisation (WHO), advice from Commission working groups, and by workshops
and conferences under the Clean Air for Europe (CAFE) Programme. It also builds
on information provided by Commission RTD projects and assessment programmes
under the UN ECE Convention on Long Range Transboundary Air Pollution
(CLRTAP). A comprehensive list and references to these reports and activities is
given in Annex 1.
18 Directive 96/62/EC, OJ L 296, 21.11.1996, p. 55.
19 Directive 99/30/EC, OJ L163, 29.6.1999, p. 41; Directive 2000/69/EC, OJ L 313, 13.12.2000, p. 12;

Directive 2002/3/EC, OJ L 67, 9.3.2002, p. 14.
20 Decision 97/101/EC, OJ L 35, 5.2.1997, p. 14.

21 Decision 1600/2002/EC OJ L242, 10.9.2002, p 1.
22 See http://europa.eu.int/comm/secretariat_general/impact/key.htm

Deutscher Bundestag – 16. Wahlperiode – 101 – Drucksache 16/1814

The methodology and the modelling framework used in the integrated assessment of
options presented in the Strategy are described in Annex 2. The main elements were:
(1) establishment of baseline scenario for air pollution up to 2020; (2) analysis of the
“policy gap” between the baseline and Community long-term objectives; (3)
assessment of policy options; and (4) definition of interim objectives for the Strategy.

The assessment uses our best scientific understanding of the emissions, atmospheric
transport, and human health and environmental impacts of air pollution. Where there
is sufficient consensus and robust information a quantitative assessment has been
provided i.e. for human health impacts. Many health impacts have also been
estimated in monetary terms, but this has not been possible for the assessment of
impacts on the natural environment. Because of this, an “Extended Cost-Benefit
Analysis” has been set up, in order to include effects that are not quantified or
assessed in monetary terms but are likely to be important and potentially capable of
changing the balance of costs and benefits.

The methodology used has also been subject to independent scientific peer reviews.23
These reviews give details of possible uncertainties caused by model simplifications,
assumptions, boundary conditions and inherent technical uncertainties. Extensive
sensitivity analyses24 have also been performed to assess uncertainties and the
robustness of the model results, particularly uncertainties in energy demand and
agricultural production, emissions data and emissions abatement factors, the various
ambition levels, or target-setting methods. These aspects are described in Annex 2,
and were thoroughly discussed with contractors and stakeholders during work on the
Strategy.25 This process will lead to improvements in the impact assessment
modelling used for revision of the National Emission Ceilings Directive26 in 2006.
23 See http://europa.eu.int/comm/environment/air/cafe/activities/rain_model.htm and

http://europa.eu.int/comm/environment/air/cafe/activities/krupnick.pdf
24 i.e. numerous models with different key assumptions in order to estimate to what extent optimised
strategies are dependent on various input parameters
25 In particular the Working Group of Target Setting and Policy Assessment as well as the CAFE Steering

Group.
26 Directive 2001/81/EC, OJ L 309, 27.11.2001, p. 22.

Drucksache 16/1814 – 102 – Deutscher Bundestag – 16. Wahlperiode

2. WHAT PROBLEM DOES THE THEMATIC STRATEGY ON AIR POLLUTION SET OUT TO
TACKLE?

2.1. The problem of air pollution

Air pollution is a significant public health concern. It is responsible for a significant
reduction in average life expectancy, several hundred thousand premature deaths,
thousands of additional hospital admissions, increased use of medication and
millions of days every year where activities are restricted. The pollutants of most
concern for human health are ozone and airborne particulate matter.

There are many sources of air pollution; the main contributing sectors are transport,
power generation, industry, agriculture, domestic use of products, and heating. All
these sectors emit a variety of air pollutants, such as sulphur dioxide, nitrogen
oxides, ammonia, volatile organic substances and particulate matter. Other important
air pollutants include persistent organic pollutants, heavy metals and polyaromatic
hydrocarbons. The relationship between the economic sectors, emissions, air
pollution and the negative effects is schematically outlined in Figure 1. The
pollutants of most concern for human health are ozone and airborne particulate
matter.

Two environmental problems are worth setting out in more detail.

Particulate matter (particles in the range PM10 – PM2.5) consists both of
(i) “primary particles”, which are emitted directly into the atmosphere from
combustion processes, industrial processes and mechanical, like grinding, and
(ii) emissions of gaseous pollutants such as sulphur dioxide (SO2), nitrogen oxides
(NOx) and ammonia (NH3), which are altered through chemical reactions in the
atmosphere, adding to the particulate mass, and are referred to as “secondary
particles” or “secondary aerosol”.27 Varying amounts of water also contribute to the
aerosol particulate mass. The total atmospheric burden of aerosol particulate matter
depends on the total emissions of primary particles and the contribution of secondary
particulate matter. The contribution of gaseous pollutants to the fraction of secondary
inorganic aerosol particulate matter is well described and validated through
comparison with monitoring data, whereas there is a lack of understanding about the
formation of secondary organic aerosols particulate matter and also very limited
monitoring data for model validation. At present the assessment of aerosol
particulate matter with models systematically underestimates the contribution of
secondary aerosols, and the total particulate matter as the contribution to secondary
organic aerosol is not included. The modelled values of aerosol particulate matter are
some 20 to 30 percent lower than the observed values of particulate matter. Part of
the reason for the difference is that secondary organic aerosol is not accounted for in
the model.
27 Particulate matter in ambient air is classified according to its aerodynamic diameter, so PM10 and PM2.5

refer to all particles with a diameter of less than 10 micrometer (µm) and 2.5 micrometer (µm)
respectively. The “fine fraction” (PM2.5) is more strongly associated with anthropogenic activities than

the “coarse fraction” (particles in the range PM10 – PM2.5), which may contain for example wind-blown
dust and Saharan sand. Secondary aerosol falls into the fine fraction.

Deutscher Bundestag – 16. Wahlperiode – 103 – Drucksache 16/1814

Ozone occurs naturally in the stratosphere and in the troposphere, but ozone
concentrations close to ground-level are harmful to ecosystems and human health.
Ground-level ozone is formed from the complex chemical reactions between volatile
organic compounds (VOC) and NOx in the presence of sunlight. VOC are emitted
from many different sources, including petrol stations, tailpipe emissions from cars,
and the use of solvents and solvent containing products such as paints and varnishes.

Figure 1: The problem of air pollution

Transport

Agriculture

Domestic

Power
generation

Industry /
Processes

SO2

VOC

NOx

NH3

PM

Acid deposition

Eutrophication

Ground level
ozone

PM
Concentration

Nature /
Biodiversity

Crops

Materials

Health

SECTORS EMISSIONS AIR QUALITY EFFECTS

Transport

Agriculture

Domestic

Power
generation

Industry /
Processes

SO2

VOC

NOx

NH3

PM

Acid deposition

Eutrophication

Ground level
ozone

PM
Concentration

Nature /
Biodiversity

Crops

Materials

Health

SECTORS EMISSIONS AIR QUALITY EFFECTS

Source : RAINS, CBA, based on EEA, Air pollution in Europe 1990-2000, Topic report 4/2003

2.1.1. Air pollution impacts

Air pollution can have a number of impacts: damage to human health, acidification,
eutrophication, and damage to other ecosystems such as forests. Other impacts have
been identified and assessed, such as damage to materials, buildings and cultural
heritage, as well as wider economic and social effects. Chapter 5 of this report
provides a more detailed review of these impacts and the methodology used for their
assessment.

Ozone and airborne particulate matter can affect human health28. They are
responsible for several hundred thousand premature deaths every year. They also
cause thousands of additional hospital admissions and millions of days every year
where individuals have to restrict their activities. These health impacts are caused by
both long-term (chronic) and short-term (acute) exposure, resulting in both mortality
(death) and morbidity (illness). The “Systematic Review of Health Aspects of Air
28
Scientific evidence exists also concerning health effects caused by nitrates, sulphates and ammonia as

aerosols. These effects however are significantly smaller (results of ExternE projects). In addition, for
the purpose of CAFÉ, those effects are considered that are explicitly recognized by international bodies
such as WHO.

Drucksache 16/1814 – 104 – Deutscher Bundestag – 16. Wahlperiode

Pollution in Europe” carried out by WHO29 revealed significant impacts of exposure
to particulate matter and ozone even at low concentrations. Indeed, no safe level for
effects has currently been identified for either of these pollutants.30

Emissions of SO2, NOx and NH3 contribute to the acidification of lakes, rivers,
forests and other ecosystems, including Natura 2000 sites. 31 Acidification can
result in the loss of fauna and flora, and ecosystems may take many decades to
recover after acidifying inputs are reduced to sustainable levels.32

Eutrophication can occur when nutrient nitrogen is deposited. This can lead to
changes in the composition of species in plant communities and loss of biodiversity.
Emissions of NOx and NH3 contribute to nutrient nitrogen deposition.

Ground level ozone can also damage forests, crops and vegetation where a critical
level of ambient concentration is exceeded.33 Ozone damage is recognised as the
most serious regional air pollution problem affecting the agricultural sector in
Europe.

Air pollution also has an impact on material and cultural heritage. The main
damage was earlier due to high levels of sulphur dioxide, but the increase in vehicle
emissions created a new multi-pollutant situation. A recent EU research project
MULTI-ASSESS34 developed dose-response functions for corrosion and soiling of
indicator materials for the multi-pollutant situation involving the effect of both
climate and pollution. These have been used to propose new quality objectives to
protect various materials, expressed as "acceptable" concentrations of air pollution.
For SO2, an "acceptable" level of 10µg/m3 is proposed that protects 80% of European
territory at present HNO3 levels. Taking an "acceptable" soiling level and intervals
between cleaning, an acceptable PM10 level of 15 µg/m3 has been calculated. These
objectives would be relevant in areas with cultural assets and other materials that
require protection from corrosion and soiling.

The quantitative impact assessment of the Strategy concentrated on five major
impacts of the five major pollutants, as illustrated in Table 1
29 http://www.euro.who.int/eprise/main/WHO/Progs/AIQ/Activities/20020530_1
30 Given that there is a finite background concentration of ozone, the analyses presented here are only

based upon situations where 8-hour mean ozone concentrations exceed 35 parts per billion (ppb), which
corresponds to an ozone equivalent concentration of 70 micrograms per cubic metre (µg/m3).

31 For many of these impacts a “critical load” is defined. This represents a quantified amount of, for
example, acid deposition below which the ecosystem is not expected to be at risk.

32 The compensating effects of pollutants should also be considered : in some cases, the acidification
effects persist as compensating effects between PM and SOx do not take place anymore, given the
reduction of PM but the still high level of SOx from Eastern Europe might balance this (results from the

GARP II report - Chapter 11 "Forest and Ecosystem damage").

33 Such a critical level is expressed in terms of an accumulated concentration in hours above a threshold of
40 ppb (equivalent to 80 µg/m3). For forest the critical level is 5,000 part per billion hours (ppb.hours).

34 http://www.corr-institute.se/MULTI-ASSESS/

Deutscher Bundestag – 16. Wahlperiode – 105 – Drucksache 16/1814

Table 1: Multi-pollutant/multi-effect approach of the Strategy

Primary
PM

SO2 NOx VOC NH3

Health effects:

- Particulate matter √ (22%) √ (19%) √ (13%) √ (46%)

- Ground-level ozone √ √

Vegetation effects:

- Ground-level ozone √ √

- Acidification √ (27%) √ (24%) √ (49%)

- Eutrophication √ (37% √ (63%)

Source: RAINS. Percentages represent the relative contribution of each primary pollutant to the effect, as
estimated by RAINS at EU-25 level, for a marginal change over 2020 baseline. This calculation is not available
for ground-level ozone.

2.1.2. Current trends in air quality

Air pollution travels long distances and it has long been recognised as posing
significant risks to human health and the environment. Therefore, air pollution has
long been regulated at European level. For example, the first Community legislation
to reduce air pollution from passenger cars was introduced as early as 1970,35
followed by legislation on ambient air quality.36 Subsequently, there have been
Community measures to address emissions from large combustion plants, to prevent
emissions from large industrial installations in an integrated way, to improve fuel
quality, to reduce the VOC content of products, to improve the framework for the
management of ambient air quality, and to set national emission limits for important
atmospheric pollutants.

Reductions in air emissions should lead to better air quality. However, the
relationship between primary pollutant emissions and air quality is not
straightforward. Air quality is affected not only by local emissions but also by the
interactions between these pollutants, their long-range transport in the atmosphere,
natural emissions and meteorological conditions. There is increasing evidence that
air pollution travels even longer distances than thought before. Such hemispheric
transport of air pollution between the continents is a new emerging issue and will be
discussed in section 8.3.

Ambient concentrations of PM10 before 2000 decreased due to measures tackling
contributing sources such as large combustion plant and diesel vehicles. More recent
measurement data over the period 1997 to 2001 show a decreasing trend in ambient
PM10 concentrations up to 1999 and then a slight increase up to 2001. Over the entire
period concentrations have been reduced by around 15-20%, though the picture
varies across Europe as there is a mix of decreasing, static and increasing trends in
35
Directive 70/220/EEC, L 76, 6.4.1970, p.1.
36 Council Directive 85/203/EEC of 7 March 1985 on air quality standards for nitrogen dioxide, and

Council Directive 80/779/EEC of 15 July 1980 on air quality limit values and guide values for sulphur
dioxide and suspended particulates.

Drucksache 16/1814 – 106 – Deutscher Bundestag – 16. Wahlperiode

concentrations. Whilst there has been some monitoring of PM2.5 concentrations since
legislative requirements were introduced in 1999, it is insufficient to determine long-
term trends.

The situation for ozone pollution is partly dependent on emissions in the EU, but also
on the background ozone concentrations of air coming to Europe (also known as
hemispheric background). That ozone background concentration has been observed
to increase in recent decades and is projected to increase further due to the increased
emissions of ozone precursors over the Northern hemisphere. Hence, there are
concerns that the reduction in emission of ozone precursors in Europe is being partly
neutralised by the increased background ozone levels over the northern hemisphere.37

2.2. Trends in air pollution levels up to 2020: the CAFE Baseline

2.2.1. Trends in pollutant emissions

Community-wide and national policies have brought about and will continue to
deliver substantial emissions reductions in Europe. The CAFE programme has
brought together information on the likely levels of air pollution given present
policies for the period 2000-2020. This CAFE baseline38,39 (see Annex 2 for details)
takes into account future economic development, as well as the effect of emissions
control legislation. Some legislation has not been included because it leaves the
Member States substantial discretion as to its implementation or attainment.40

Emissions of most air pollutants are projected to decline in the EU-25 even if
economic growth takes place (Figure 2). The forecasts for emissions in the EU-25 of
specific air pollutants under the baseline scenario are as follows.

– Large reductions for sulphur dioxide (SO2) (68% by 2020 compared to 2000)
are expected as a consequence of the decline in coal consumption and full
implementation of the large combustion plant directive amongst others.

– Emissions of nitrogen oxides (NOx) are projected to decrease by 49% over the
period 2000-2020 because of a decline in traditional emissions (e.g. from road
transport) so that in the future other sectors such as domestic heating, industrial
and combustion processes, maritime shipping and non-road machinery will
make more important contributions.

– The emissions of volatile organic compounds (VOC) are projected to decline
by 45% over the period 2000-2020. The largest reduction should come from
mobile sources and the use of solvents and paints.
37 See EMEP/CCC Report 1/2005, http://www.nilu.no/projects/ccc/reports/cccr1-2005.pdf
38 http://www.europa.eu.int/comm/environment/air/cafe/general/pdf/cafe_lot1.pdf
39 http://europa.eu.int/comm/environment/air/cafe/general/pdf/scenarios_cafe.pdf
40 For example, the current ambient air quality legislation has not been included directly in the baseline

because it sets environmental quality standards but does not propose the measures that the Member
States must take to meet those standards. A second example is attainment of the ceilings in the National

Emissions Ceiling Directive, as this Directive does not prescribe the measures to be implemented but
only imposes an obligation for the ceilings to be attained. However, in both cases where the national
source-based measures are known (Community-wide or national) these have been included in the
baseline.

Deutscher Bundestag – 16. Wahlperiode – 107 – Drucksache 16/1814

– Ammonia (NH3) emissions are not likely to change. As the vast majority of
ammonia emissions come from agriculture it would have been important to
include the impact of the recent Common Agriculture Policy (CAP) reform on
ammonia emissions. However, as it was not yet known, at the moment of the
assessment, how Member States will exactly implement the CAP reform, it has
not been possible to revise the baseline emissions. The impact of CAP reform
on ammonia emissions has to be carefully estimated, and this will be done in
the context of the review of the NECD.

– Emissions of primary particulate matter in the PM10 size fraction are
projected to decrease by 39% for the EU-25 over the period 2000-2020.41
Reductions in the power generation and transport sectors are primarily
responsible for these improvements. The fine fraction (i.e. PM2.5) is predicted
to decline by around 45%. This is partly due to the implementation of more
stringent emission standards for road vehicles such as the Euro 5 emission
limits for heavy duty engines.

Figure 2: EU-25 land-based emissions of pollutants from 1990 to 2020

0

5000

10000

15000

20000

25000

1990 2000 2010 2020

ki
lo

to
nn

es

SO2

NOx

VOCs

NH3
Source: CAFE Baseline final report. Land-based emissions of pollutants covered by the NECD

With the effect of all these policy changes, the relative importance of different land
based sources is also forecast to change. (Table 2) In contrast to the expected
reductions in emissions from land-based sources, the maritime sector is becoming
an even larger source of air pollution. It is projected that emissions of SO2 from the
maritime sector will increase by around 45% while emissions of NOx will increase
by approximately 67%. With these growth rates, emissions of SO2 and NOx from the
maritime sector should surpass total emissions from land-based sources by 2020.

41 So far 14 out of 25 Member States have reported PM emission inventories, thus limiting the validation

of the quality of the RAINS calculations.

Drucksache 16/1814 – 108 – Deutscher Bundestag – 16. Wahlperiode

Table 2: Emissions by sector for EU-25 (% total)

% land based sources
SO2 NOX VOC NH3 PM2.5
2000 2020 2000 2020 2000 2020 2000 2020 2000 2020
Power generation 57.4 21.6 17.8 13.6 0.9 1.3 0.4 0.6 8.5 5.7
Industry 18.7 29.8 9.6 14.5 0.5 0.7 0.1 0.1 1.9 1.9
Households 7.6 7.2 5.5 10.1 7.2 9.0 0.7 0.6 38.7 39.3
Transport 4.6 7.7 61.3 51.2 38.9 17.5 2.0 0.6 28.9 20.3
Agriculture 0.0 0.0 0.0 0.0 0.5 1.0 91.1 92.7 3.9 7.1
Processes 11.7 33.7 5.8 10.6 51.9 70.5 5.8 5.4 18.2 25.8
Total land (kt) 8,735 2,805 11,581 5,888 10,661 5,916 3,824 3,686 1,749 964
International sea
transport (kt)

2,430 3,526 3,557 5,951 n/a n/a n/a n/a n/a n/a

Share of land
based sources %

27.8 125.7 30.7 101.1 n/a n/a n/a n/a n/a n/a

Source: RAINS

Most of the significant emission reduction was achieved for emitting sectors
regulated at European level. In that sense European legislation has been successful
and ensured a real decoupling between emissions of pollutants and economic growth.
The important future emitting sectors are not regulated at European level and often
consist of a large number of smaller emitters which are more complicated to regulate
and control.

2.2.2. Trends in particulate matter concentrations

Ambient concentrations of PM2.5 are projected to decrease from 2000 to 2020
(Figure 3) as a result of changes in primary emissions and also in the precursor
emissions of secondary aerosol (SO2, NOx, and NH3). As explained above
(Section 2.1)) the secondary aerosol contribution is systematically underestimated in
models. The changes in PM2.5 levels over time shown in Figure 3 give an estimate of
reductions in PM2.5 levels than can be expected from the reductions in emissions in
2000 and 2020. It should also be kept in mind, however, that these changes may be
masked year to year by changes in meteorological conditions.

Deutscher Bundestag – 16. Wahlperiode – 109 – Drucksache 16/1814

Figure 3: Loss in life expectancy attributable to anthropogenic PM2.5 in 2000 and 2020
2000 Baseline 2020

Source: RAINS. Note: Calculation based on meteorological conditions of 1997.

Rationale for using 1997 meteorological conditions in this Impact Assessment

Impacts of air pollution depend not only on the emissions but also on meteorology. For
instance, in 2003 the concentrations of ozone and particulate matter were high in many EU
Member States which experienced an exceptionally hot and sunny summer. In the CAFE
baseline report an average meteorology was calculated for 1997, 1999, 2000 and 2003 and
these results were used for the CAFE Baseline report.

However, the impact assessment was calculated using 1997 meteorology because it was not
possible to calculate all combinations of meteorological conditions in time for this impact
assessment42. Year 1997 was chosen as it was considered the most representative of all four
available years. In order to compare like-with-like the environmental and health effects of
different scenarios baseline calculations up to 2020 were calculated by using 1997
meteorological conditions and these were compared with the situation in 2000 using also the
meteorological conditions of 199743. Thus, unless otherwise stated, all environmental and
health effects of different scenarios in this Impact Assessment use the same
meteorological conditions of 1997.

2.2.3. Trends in ground-level ozone concentration

Following the WHO advice that “the largest burden on public health may be
expected from the many days with mildly elevated concentrations, and not with the
few days with very high concentrations”,44 control strategies now address general
42 It takes about 3 months for a supercomputer to run all scenarios for one meteorological year. Thus, only

one year could be counted for this impact assessment and 1997 was chosen as the most representative
year. For the calculations of the revision emissions ceilings directive, five meteorological years will be
calculated.

43 Had a different meteorogical conditions been selected, the results in the Impact Assessment would have
been biased and reflected rather the impact of meteorology rather than the change of anthropogenic
emissions of air pollution.

44
Modelling and assessment of the health impact of particulate matter and ozone: Summary report
prepared by the joint Task Force on the Health Aspects of Air Pollution of the World Health
Organization/European Centre for Environment and Health and the Executive Body
http://www.unece.org/env/documents/2004/eb/wg1/eb.air.wg1.2004.11.e.pdf

Drucksache 16/1814 – 110 – Deutscher Bundestag – 16. Wahlperiode

background concentrations45 and not just very high but short-term concentrations,
because of the observed health effects of high ozone levels from relatively low
atmospheric concentration. While the health problems related to PM2.5 are most
severe in North-West Europe, the issue of ozone is particularly important in the
Mediterranean Member States. Despite appreciable improvements, many of the
densely populated areas in the south could still be at risk by 2020 (Figure 4).

Figure 4: Health effects attributable to exposure ground-level ozone (ppb.days) in 2000
and 2020

2000 Baseline 2020
Source: RAINS. Note: Calculation based on meteorological conditions of 1997.

The ozone critical level46 for forests was frequently passed in 2000 in large parts of
the European Union. Baseline emission reductions will improve the situation, but
will not be sufficient to eliminate the risk even by 2020 (Figure 5)).
45 The indicator used for assessing ozone health impacts is called SOMO35, and corresponds to the sum of

excess of daily maximum 8-h means over the cut-off of 35 ppb (which is equivalent to 70 µg/m3)
calculated for all days in a year. Previous Community objectives for ozone focused on reducing human

exposure to concentrations above a threshold of 60 parts per billion (120 µg/m3).

46 The Working Group on Effects of the LRTAP Convention recommended that the metric “accumulated
ozone over a threshold of 40 ppb” (AOT40) be used as the indicator for ozone damage to vegetation.
The revised ozone critical level for forests is 5,000 parts per billion hours (ppb.hours).

Deutscher Bundestag – 16. Wahlperiode – 111 – Drucksache 16/1814

Figure 5: Evolution of ozone exposure for forests in 2000 and 2020
2000 Baseline 2020

Source: RAINS. Note: Calculation are based on the meteorological conditions of 1997, 1999, 2000 and 2003,
using ecosystem-specific deposition to forest. The maps were not available for 1997 meterological data alone.
However, the difference would be small. The critical level for forest trees is set at 5 ppm.hours.

2.2.4. Trends in acidification and eutrophication

Sulphur deposition has fallen significantly over the past 20 years and large areas are
now expected to be protected from further acidification. In 2000, acidifying
deposition was still above critical loads47 in parts of central and north-west Europe.
The percentage of EU-25 forest areas receiving acid deposition above their critical
load is projected to decrease from 23% in 2000 to 13% in 2020 (Figure 6). For those
areas still at risk, ammonia is projected to be the dominant source of acidification in
the future.48 The projected trend for so-called “semi-natural” ecosystems49 is
similar (decrease from 23% to 9%) (Figure 7).
47 The concept of critical loads is used as the quantitative indicator for sustainable levels of sulphur and

nitrogen deposition. Critical loads databases are compiled by the Coordination Centre for Effects (CCE)
of the CLRTAP, which combines quality-controlled critical load estimates submitted by each of the
national focal centres designated by each party to the CLRTAP. Currently more than 1.6 million
monitoring sites are included in the database

48 The compensating effects of pollutants should also be considered. In some cases acidification effects
persist because compensating effects between PM and SOX do not take place anymore, given the
reduction of PM but the still high level of SOX from Eastern Europe (results from the GARP II report -

Chapter 11 "Forest and Ecosystem damages").

49 Only six Member States have provided estimates of critical loads for “semi-natural” ecosystems, which
are nature and landscape protection areas, many of them designated as “Natura 2000” areas under the
EU Habitat directive : France, Germany, Ireland, Italy, the Netherlands and the UK

Drucksache 16/1814 – 112 – Deutscher Bundestag – 16. Wahlperiode

Figure 6: Evolution in forest area with acid deposition above critical loads in 2000 and
2020

2000 Baseline 2020
Source: RAINS. Note: Calculation results are based on the meteorological conditions of 1997, using ecosystem-
specific deposition to forests.

Critical loads for freshwater bodies (lakes and streams) have been estimated only
for three EU Member States and Norway.50 Figure 8 shows a significant decline in
acid deposition between 2000 and 2020, but this may not allow recovery from
acidification as deposition may remain above the critical loads. Even when acidic
deposition can be reduced to levels below the critical load, there may be a time-lag of
several decades before chemical and biological recovery

Figure 7: Percentage of the area of semi-natural ecosystems receiving acid deposition
above the critical loads in 2020 and 2020
2000 Baseline 2020

Source: RAINS. Note: Calculation results are based on the meteorological conditions of 1997, using ecosystem-
specific deposition.

50 Finland, Sweden and the UK.

Deutscher Bundestag – 16. Wahlperiode – 113 – Drucksache 16/1814

Figure 8: Percentage of freshwater ecosystems area receiving acid deposition above the
critical loads in 2020 and 2020
2000 Baseline 2020

Source: RAINS. Note: Calculation results are based on meteorological conditions of 1997, using ecosystem-
specific deposition.

Excess nitrogen deposition poses a threat to a wide range of ecosystems endangering
bio-diversity through changes in plant communities. Excess nitrogen deposition
above critical loads is currently widespread, due to the limited reductions in nitrogen
deposition over the past 10 years. For the period 2000-2020, the protection of
ecosystems from eutrophication is expected to improve only slightly (Figure 9)
mainly because of the relatively small decline in ammonia emissions.

Figure 9: Evolution of the percentage of the total ecosystem area receiving nitrogen
deposition above the critical loads for nutrient nitrogen in 2000 and 2020
2000 Baseline 2020

Source: RAINS. Note: Calculation results are based on meteorological conditions of 1997, using grid-average
deposition. Critical loads data base of 2003.

Drucksache 16/1814 – 114 – Deutscher Bundestag – 16. Wahlperiode

2.3. Quantification and valuation of health impacts of air pollution

As explained above, in principle the impacts of air pollution fall into two categories,
those on health and those on the environment. Health impacts can be quantified and
monetised, while for environmental impacts this is only possible for the impacts of
ozone on crop yield and of acidic deposition on buildings.

2.3.1. Quantification of health impacts

The methodology followed by the impact assessment (See Annex 2) aimed to neither
systematically over-estimate nor under-estimate the health effects. The impact
assessment is consistent with the WHO’s “Systematic Review of Health Aspects of
Air Quality in Europe” 51 and the advice of UNECE WHO Joint Task Force on
Health. Health impacts have been estimated for both particulate matter and ozone for
short-term (acute) and long-term (chronic) exposure.

Despite the improvement in pollutant emissions, health impacts from air pollution
across the EU are still projected to be very large in 2020. Mortality and morbidity
effects from exposure to particulate matter are expected to be significantly larger
than those associated with ozone.

For particulate matter, the average loss in statistical life expectancy should decrease
from around 8.1 months in 2000 to 5.5 months in 2020 (Figure 3). Correspondingly,
in 2020 it is estimated that some 2.5 million life years will be lost in the EU-25. This
is equivalent to about 271,000 premature deaths. The morbidity effects associated
with particulate matter include around 66,000 serious/cardiac hospital admissions in
2020 and larger numbers of less serious effects such as 23 million respiratory
medication-use days and two hundred million restricted activity days.

For ozone, the annual impacts are projected to include some 20,000 acute mortalities
(cases of deaths brought forward) in 2020 without any notable decrease from the
situation in 2000.52 Ozone exposure is also projected to lead to less serious health
impacts, including more than 20 million respiratory medication-use days.

Table 3 summarises the total annual health impacts across the EU-25 for the baseline
situation from 2000 to 2020. The impacts are split into acute and chronic mortality
(i.e. premature deaths) and morbidity (i.e. illness) for particulate matter and ozone.
Note two alternative metrics are used for the presentation of chronic mortality for
particulate matter. The first is in terms of years of life lost and the second in terms of
numbers of deaths.
51 See http://www.euro.who.int/document/e79097.pdf and answers to follow-up questions
http://www.euro.who.int/document/e82790.pdf
52 The relative stability in health impacts from ozone is due to the nature of ozone concentrations changes, but also

the population at risk (i.e. the aging population in Europe) which increases.

Deutscher Bundestag – 16. Wahlperiode – 115 – Drucksache 16/1814

Table 3: Estimated health effects of air pollution in from 2000 to 2020

Effect Unit 2000 Baseline 2020

Chronic and acute mortality
PM Chronic mortality*) Thousands life years lost 3,619 2,467
PM Chronic mortality*) Premature deaths 347,900 271,600
PM Infant mortality Premature deaths 680 350
Ozone acute mortality Premature deaths 21400 20800

PM morbidity effects
Chronic bronchitis Cases 163,800 128,100
Respiratory hospital admissions Cases 62,000 42,300
Cardiac hospital admissions Cases 38,300 26,100
Restricted activity days (RADs) Million days 347.7 222.0
Respiratory medication Use (children) Million days 4.2 2.0
Respiratory medication Use (adults) Million days 27.7 20.9
LRS (including cough) among children Million days 192.8 88.9
LRS among adults with chronic
symptoms Million days 285.3 207.6

Ozone morbidity effects
Respiratory hospital admissions Cases 14000 20100
Respiratory medication Use (Children) Million days 21.4 12.9
Respiratory medication Use (Adults) Million days 8.8 8.2
Minor Restricted Activity Days (MRADs) Million days 53.9 42.4
Cough and lower respiratory symptoms
(LRS) (children) Million days 108.1 65.3

*) Chronic mortality due to PM has been calculated in two alternative ways.
Note: Assuming 1997 meteorological year. Source: CBA CAFE Baseline (2005)

The methodology used has been developed following extensive stakeholder dialogue
and has been peer-reviewed by leading experts in the field. The values used for
expressing health impacts in monetary terms are the most up-to-date available. The
values are presented as an annual impact in euros for the EU-25.

Methodologically, there is still debate as to how mortality should be valued. Two
methods can be used. The first is the “value of statistical life” (VSL) approach where
a pre-determined monetary VSL is multiplied by the change in the number of deaths
to arrive at a monetary valuation. The second is the “value of life year” (VOLY)
approach, which applies a value to changes in life expectancy to arrive at a monetary
valuation. The two methods have contrasting strengths and weaknesses. Following
the independent external peer review of the CAFE Cost-Benefit Analysis
methodology, this impact assessment presents results for both the VSL and the
VOLY approaches to show in a transparent manner the inherent uncertainty of both
approaches.

Thus, for chronic mortality due to particulate matter, alternative values have been
used (Table 4). The first two values are based on the VSL approach. The first uses
the median of values of VSL, i.e. the value for which half of the values are greater

and half of the values are smaller. The second uses the arithmetic mean (i.e. non-
weighted average) of the responses. The third and fourth values use the VOLY
approach based upon the median and mean values of life years lost.

Drucksache 16/1814 – 116 – Deutscher Bundestag – 16. Wahlperiode

The health damage costs are dominated by particulate matter, with premature
mortality being most important. Morbidity is also significant however. The most
important categories for particulate matter related morbidity arise from restricted
activity days (RADs), minor restricted activity days (MRADs), cases of chronic
bronchitis, and to a lesser extent additional days with lower respiratory symptoms
(LRS). These morbidity effects contribute significantly to the total damage costs of
PM. However, it should be kept in mind that the basis of evidence for quantifying
them is more limited than for mortality, and it has been evaluated much less
intensively by the air pollution research community.53

Table 4: Values of health effects of air pollution
Value of statistical life (VSL) (€) Value of life years (VOLY) (€)
Median 980,000 52,000
Mean 2,000,000 120,000

Source: NewExt54 (2004) and CAFE Cost-Benefit Analysis methodology (2005)

2.3.2. Health damage of air pollution up to 2020

The total annual damage costs associated with particulate matter and ozone in 2020
are estimated at between €189 billion and €609 billion, depending on the mortality
valuation method used. (Table 5). These costs are dominated by particulate matter,
with mortality being more important than morbidity. Table 6 breaks down the figures
for the different Member States, where the costs reflect their specific situation.

It could be important to include the effects of chronic exposure to ozone on health,
and the social implications of air pollution health impacts, but there is inadequate
evidence available to make a firm conclusion at this point in time.
53 For example, the exposure-response functions for the most influential endpoints are based on a few

studies, mostly in the USA. They build on structured interviews about occurrence of symptoms and
days when activity is restricted by health, whereas mortality is a definite end-point; and there are
limited data on background rates in Europe. On the other hand, these are endpoints which are expected
to be affected by PM. They have been included in many other major cost-benefit analysis of air
pollution, including by the US EPA. The WHO-UNECE Task Force on Health considers that the
morbidity evaluations for CAFE CBA are a significant step forward and should be included, with due
regard to the uncertainties. The methodology for the morbidity effects is described in more detail in
Volume 2 of the Methodology for the Cost-Benefit Analysis of the CAFE Programme (AEAT, March
2005)

54
« New Elements for the Assessment of External Costs from Energy Technologies », project financed by
DG Research, Technological Development and Demonstration (RTD). EU 5th FP, duration 2001-2003.
Project co-ordinator : Institute of Energy Economics and the Rational Use of Energy (IER), University
of Stuttgart (http://www.ier.uni-stuttgart.de)

Deutscher Bundestag – 16. Wahlperiode – 117 – Drucksache 16/1814

Table 5: Values of health damage due to air pollution in EU-25 in 2020 (millions of
euros)

Median values based on Mean values based on
Value of

Life Years

Value of
Statistical

Life*)
Value of Life

Years

Value of
Statistical

Life*)
Mortality from particulate matter*)
Chronic mortality from particulate matter 129,000 289,556 265,965 547,200
Infant (0-1yr) mortality 495 990 495 990
Sub-total 129,495 290,546 266,460 548,190

Morbidity from particulate matter
Chronic bronchitis 24,011 24,011 24,011 24,011
Restricted activity days (RADs) 18,515 18,515 18,515 18,515
Lower respiratory symptoms among children 3,413 3,413 3,413 3,413
Lower respiratory symptoms in adults with chronic symptoms 7,974 7,974 7,974 7,974
Other morbidity effects 159 159 159 159
Sub-total 54,072 54,072 54,072 54,072

Total particulate matter 183,567 344,618 320,532 602,262

Mortality from ozone
Acute mortality from ozone 1,085 2,435 1,085 2,435

Morbidity from ozone
Lower respiratory symptoms among children 2,508 2,508 2,508 2,508
Minor Restricted Activity Days 1,629 1,629 1,629 1,629
Other morbidity effects 60 60 60 60
Sub-total ozone morbidity 4,197 4,197 4,197 4,197

Total ozone 5,282 6,6334 5,282 6,633

TOTAL PM AND OZONE 188,848 351,250 325,813 608,893
*) Distinction is made only in the case of chronic mortality due to particulate matter

Source: CBA CAFE Baseline (2005)

Drucksache 16/1814 – 118 – Deutscher Bundestag – 16. Wahlperiode

Table 6: Values of health damage due to air pollution in Member States in 2020 (billions
of euros)

Median values based on Mean values based on
Value of

Life Years

Value of
Statistical

Life*)

Value
of Life
Years

Value of
Statistical

Life*)
Austria 3.3 6.2 5.6 10.3
Belgium 7.1 13.3 12.0 22.4
Cyprus 0.3 0.5 0.4 0.6
Czech Republic 4.4 8.1 7.7 14.4
Denmark 1.8 3.4 3.2 6.1
Estonia 0.2 0.5 0.5 0.9
Finland 0.9 1.6 1.5 2.8
France 26.9 50.1 42.4 78.7
Germany 40.6 75.8 73.8 139.0
Greece 4.2 7.9 8.2 15.4
Hungary 5.0 9.4 9.9 18.6
Ireland 0.9 1.6 1.2 2.2
Italy 23.0 42.6 44.6 84.2
Latvia 0.8 1.5 1.2 2.1
Lithuania 0.8 1.4 1.9 3.6
Luxembourg 0.3 0.5 0.4 0.7
Malta 0.2 0.3 0.3 0.5
Netherlands 10.4 19.5 16.8 31.3
Poland 18.0 33.3 30.2 56.1
Portugal 2.4 4.4 4.3 8.0
Slovakia 2.5 4.7 4.1 7.7
Slovenia 0.9 1.6 1.5 2.9
Spain 10.0 18.3 17.3 32.2
Sweden 1.9 3.6 3.2 6.0
United Kingdom 22.1 41.2 33.7 62.2
Total 188.8 351.2 325.8 608.9

Source: CBA CAFE Baseline (2005)

Deutscher Bundestag – 16. Wahlperiode – 119 – Drucksache 16/1814

2.4. Environmental and non-health impacts

Non-health impacts have been estimated across EU-25 for the baseline from 2000 to
2020. Some of these impacts have been valued in monetary terms. For these, the
main effects are damage to crops (i.e. reduced crop yield) and damage to materials
(excluding historic buildings and cultural heritage). The two main pollutants of
concern are ozone (for crops) and SO2 (for materials).

The impacts and benefits of reduced crop damage due to ozone and reduced material
damage due to reduced SO2 emissions have been expressed in monetary terms, using
the approach outlined in the CAFE CBA methodology (Table 7). These impacts are
small in relation to health damage overall. However, effects from ozone on crops are
similar in magnitude to ozone-related health impacts.

Table 7: Ozone and SO2 damage to crops and materials in 2000 and 2020 (billion of
euros)
2000 Baseline 2020 Difference

Crop damage due to ozone 2.8 1.5 1.3

Materials damage due to SO2 and ozone 1.1 0.7 0.4

Total 3.9 2.2 1.7

Source: CAFE CBA.

As there is a lack of objective valuation methodology at EU Level, other effects have
not been quantified in monetary terms. However, the Thematic Strategy still tries to
provide information to prompt stakeholders to consider whether the impacts that
have not been quantified are likely to be important enough to change the balance of
costs and benefits. As explained in the CAFE CBA methodology55:

– inclusion of impacts on forests, freshwaters and other ecosystems could add
significantly to the benefits quantified for emission reductions.

– inclusion of the damage to cultural assets and some impacts on crops from
interactions with pests and pathogens may be important. However, there is
inadequate evidence available to make a firm conclusion at this point in time.

55 Methodology for the Cost-Benefit Analysis of the CAFE Programme (AEAT, March 2005)

Drucksache 16/1814 – 120 – Deutscher Bundestag – 16. Wahlperiode

3. THE LONG-TERM OBJECTIVES

The 6th EAP gives a clear obligation to develop a thematic strategy that will achieve
“levels of air quality that do not give rise to significant negative impacts on and
risks to human health and the environment”. The 6th EAP also reiterates the long-
term objective contained in the National Emissions Ceilings Directive of no
exceedence of critical loads and levels for acidification, eutrophication and
ground-level ozone.56

3.1. Current policies will not bring about the long term objective

The discussion in Section 2 sets out the expected levels of air quality and the degree
of protection for natural ecosystems in 2020 that will be provided by effective
implementation of current policies. Clearly, the long-term objective will not be met
under current policies:

– PM2.5 would still reduce average statistical life expectancy by 5.0 months and
cause some 272,000 premature deaths;

– 46% of ecosystem areas would still be subject to unsustainable deposition
levels of nutrient nitrogen;

– Critical loads for acidification would be exceeded in about 10% of the area of
European forests;

– About 55% of forest areas would still be exposed to ozone above the critical
level.

In 2020, therefore, the EU would still be a long way from the long-term objectives
laid down in the 6th EAP and so further action is required.

3.2. A point of reference – The maximum technically feasibly reduction

In order to assess the potential for further action to meet the long term objective, a
scenario has been analysed in which all possible technical emissions abatement are
deployed irrespective of cost. This is the “Maximum Technically Feasible
Reduction” scenario (MTFR). This scenario is made up of cost-effective sets of
measures which go beyond current legislation and which deliver environmental
improvements in a cost-optimal manner.57

The MTFR scenario was used to find out how far it is possible to reduce
environmental and health damage due to air pollution irrespective of cost. The
human health and environmental improvements associated with the MTFR scenario
were projected in the same manner as for the baseline situation.
56 Article 1, Directive 2001/81/EC, L 309, 27.11.2001, p. 22.
57 See a description of the measures included in MTFR in CAFE Report #2: The “Current Legislation”
and the “Maximum Technically Feasible Reduction” cases for the CAFE baseline emission projections.
(http://www.iiasa.ac.at/rains/CAFE_files/baseline3v2.pdf)..

Deutscher Bundestag – 16. Wahlperiode – 121 – Drucksache 16/1814

The implementation of the MTFR scenario would bring about a considerable
additional decrease of all pollutants compared with the baseline, but would not
eliminate them altogether. This improvement is particularly important in the case of
ammonia (additional 37%) while for VOC the improvement is limited to 15%.
(Figure 10)

Figure 10: Levels of pollutant emissions in the CAFE Baseline and in Maximum
Technologically Feasible Reduction in 2020 (2000 emissions = 100%)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SOX NOX NH3 PM2.5 VOC

%
E

m
is

si
on

s
20

00

CAFE Baseline 2020 MTFR 2020
Source: RAINS

The impact on health from particulate matter and ground-level ozone would decrease
by 30% and 15% respectively. This means that, even with the MTFR scenario,
190.000 people would be estimated to die prematurely every year, and average
European average life expectancy would still have to be reduced by 3.8 months from
exposure to air pollution. Also other significant health impacts related to morbidity
would remain of concern.

Environmental impacts would also still occur. Even after application of technical
measures in the MTFR scenario, 28% of forest would still be exposed to ozone above
the critical level, 15% of ecosystems would be at risk from excessive nutrient
nitrogen, while 3 % of European forests and 5% of lakes would still be at risk from
acidification.

In addition to the MTFR option above, other non-technical measures are also
possible, e.g. changing demand in the different sectors. An “illustrative” scenario for
such a structural shift was examined using the PRIMES energy model, assuming a
carbon constrained economy that would lead to a carbon price of €90/tonne CO2 in
2020 (see Annex 2). This scenario gives a reduction in EU-25 CO2 emissions of
about 20% compared with 1990. However, effects on air pollution were not
negligible under this scenario but represent only an additional decrease in emissions
of around 2% in the case of NOx, and 0.2% for VOC. In addition, such a scenario

would also necessitate policy measures to shift demand (i.e. a tax on carbon or CO2),
with the consequent costs. These were not examined further. This was partly due to

Drucksache 16/1814 – 122 – Deutscher Bundestag – 16. Wahlperiode

the fact that such a scenario was extremely likely to be less cost-effective in terms of
air pollution reduction than the options considered further below.

Against a backdrop of the energy consumption and economic activity described in
the baseline, it is apparent that the long-term objective cannot be met. Even if the EU
undertook the most expensive and currently available emission control measures
there would still be significant negative impacts on health and the environment.

More needs to be done to attain Community long-term objectives for air pollution.
However, the application of all technical measures irrespective of cost will still not
deliver those objectives – and may be excessively costly.

This Thematic Strategy is ambitious, but at the same time strikes a fair balance
between economic and environmental dimensions. It recognises and is consistent
with the Lisbon Strategy objectives and the Community’s Sustainable Development
Strategy.

Reflecting this, the policy options dealt with in the following chapter reflect the need
to find a balance between the costs and benefits of action and determine how far to
go in closing the gap between the current environmental problems and the long-term
objective.

Deutscher Bundestag – 16. Wahlperiode – 123 – Drucksache 16/1814

4. THE MAIN POLICY OPTIONS CONSIDERED FOR THE STRATEGY

4.1. The broad approach for setting the interim objectives

The approach taken in the Strategy to set interim objectives was similar in many
respects to that followed earlier when developing the National Emissions Ceilings
Directive. The scenarios were explored, using the RAINS model in an iterative way,
and the cost and benefits of closing the gap in environmental impact between the
baseline emissions in 2020 and the MTFR scenario. However, there were
differences, too. During the development of the NEC Directive, the target setting was
based mainly on closing the gap between the base year (which was then 1990) and
the “no effect” level (in 2010). As an interim objective “50% gap closure” between
the initial situation and “no effect” was agreed. During the development of the
Thematic Strategy it was realised that the approach used in NEC Directive could not
be repeated mainly because in the enlarged EU, Member States were in different
initial positions. Thus, new approaches were called for setting targets (see Box).

Approaches to target setting

One traditional approach (applied, e.g., in the air quality directives) focuses on
environmental improvements at the most polluted sites by imposing absolute limits (or caps)
on air quality (or effect indicators) that need to be achieved throughout the entire territory of
the EU. Applied to the air quality management problems at hand, it turned out that
substantial spatial variations in the environmental indicators exist over Europe, even if the
values of these indicators for individual grid cells are aggregated to the Member States level.
The adoption of an absolute target, while it would force maximum measures in some
Member States, would not require any improvements for other Member States, because they
would achieve this level already in the baseline (current legislation case) without any
additional measures. Thus, such uniform targets expressed in absolute terms of air quality or
environmental impact indicators would result in uneven distributions of environmental
improvements and abatement burdens. In addition, economic analysis has shown that,
especially for pollution problems where no clear ‘no effect’ threshold could be identified,
larger benefits could be accrued from wide-spread improvements at moderately polluted
places compared to approaches that focus solely on a few hot spots, and thus benefit only a
limited number of people or ecosystems.

As an alternative, earlier analyses for the national emission ceilings directive and for the
CLRTAP Gothenburg Protocol applied the “gap closure” concept, which calls for uniform
relative improvements of the environmental indicators as an interim target. For NEC
Directive, the “gap closure” concept specified environmental targets in relation to the gap
between the present environmental situation (at that time the status of 1990) and the ultimate
environmental policy target of achieving no-effects levels (quantified through critical loads
or at that time AOT40/60 for ozone). With this approach, more even or “equitable”
distributions of economic burdens and environmental benefits could be achieved, which
made these accords politically acceptable. However, if, in order to establish a notion of
“equity” in terms of environmental improvements, a uniform gap closure percentage target
were used for all Member States, this target would be constrained by the Member State with
the lowest feasibility, and would in the end make only a minor contribution to ambient levels
of pollution.

This process was undertaken within the CAFE Working Group on Target Setting and

Policy Assessment (WG TSPA). The objective was to find a balance between cost-

Drucksache 16/1814 – 124 – Deutscher Bundestag – 16. Wahlperiode

effective measures that would give optimum environmental and health benefits for
Member States and the EU as a whole, and accounting for aspects of equity so that
no population group or Member State would experience disproportionately high risks
or costs. The process is described below.

4.1.1. First set of policy options

Three scenarios have been explored in depth to assess the cost and benefits of closing
the gap between the environmental situation calculated in the baseline scenario in
2020 and the MTFR scenario for 2020. These scenarios represent differing levels of
ambition based on the gap closure concept, i.e. the percentage of the gap to be closed
between the 2020 baseline and the MTFR (excluding transport sector), for losses in
life expectancy from exposure to particulate matter, for the cases of premature deaths
attributable to ozone, for accumulated excess deposition over the critical loads for
acidification, and for accumulated excess deposition for eutrophication.58

As mentioned in Section 4.1 the definition of a “gap” was different in the
development of the Strategy compared with the development of the National
Emissions Ceilings Directive. Now the “gap” was defined as the difference between
the MTFR and the baseline in 2020. In the NEC Directive the “gap” was the
difference between “no effect” level and the starting point. In other words, the “gap”
in the Strategy is in between the “gap” as this was defined in the NEC Directive.

The following four metrics are used as impact indicators, for which the gap closure is
applied59: expectancy from exposure to particulate matter; cases of premature deaths
attributable to ozone; accumulated excess deposition over the critical loads for
acidification; accumulated excess deposition for eutrophication.

– For health impacts attributable to PM2.5, RAINS used the loss in statistical
life expectancy as calculated by RAINS for each grid cell as the impact
indicator for which the environmental gap closure target is specified. Formally,
this is equivalent to a gap closure calculated for the annual mean
concentrations of PM2.5, for each grid cell of 50 km x 50 km.60 Grid average
values have been used for this exploratory series of calculations, but inclusion
of City-Delta results in subsequent runs allowed a better representation of
human exposures in urban areas. (see Annex 2)

– For health impacts attributable to ozone, RAINS calculated the number of
premature deaths attributable to ozone (SOMO35) on a grid basis and summed
them for each Member State. The gap closure was then applied to the country-
balance only, i.e. it is not requested for each individual grid cell as long as the
overall improvement within a given country is achieved. Formally, this is
58 The detail of these initial scenarios is described in: IIASA Report A - Results from the RAINS Multi-

Pollutant/Multi-Effect Optimization including Fine Particulate Matter; Background paper for the
meeting of the CAFE Working Group on Target Setting and Policy Advice, January 14, 2005

59 In the RAINS optimization, emission reductions are driven by the environmental targets specified for
the various environmental endpoints. Thus, the choice of the environmental endpoint and of the

absolute and relative improvements imposed on the selected criteria has critical influence not only on
the absolute levels of resulting emission reductions, but also on the distribution of abatement burdens
across countries and sectors.

60 See Annex 2

Deutscher Bundestag – 16. Wahlperiode – 125 – Drucksache 16/1814

equivalent to a gap closure calculated on the basis of population-weighted
SOMO35 grid data.

– For acidification, RAINS applied the gap closure concept to the total
deposition of acidifying compounds in excess of the critical loads for
acidification, accumulated over all ecosystem types (forests, semi-natural,
water) and ecosystem areas in a country. While this accumulated excess
deposition cannot be interpreted to be proportional to ecological damage in a
strict sense, it provides a continuous scale for quantifying excess deposition.
For this exploratory set of computations, RAINS uses a linear representation of
the accumulated excess deposition function. The implications of an optimized
emission reduction scenario can then be displayed for each grid cell in terms of
ecosystems area with acid deposition above/below critical loads.

– For eutrophication, RAINS applied the same “accumulated excess deposition”
concept as for acidification. The gap closure is requested on a country basis,
i.e. there is flexibility to compensate improvements at “hard to attain” targets at
individual receptor sites by additional gains in other areas within the same
country.

After analysing these three ambition levels two issues became apparent. Firstly,
reduction of concentrations of particulate matter in air was closely correlated to
reduction not only of primary particulate matter emissions but also of NOx, SO2 and
NH3, as the latter are also precursors to secondary PM2.5 concentrations. Only VOC
emissions were not correlated with PM2.5 concentrations. Secondly, it was evident
that control costs started to increase significantly at about 75% between the baseline
and MTFR in 2020. Thus, it was concluded that the following model rounds would
concentrate on PM2.5 exposure and focus on the range between 50% and 100% of
MTFR.61 Thirdly, it became evident that difficulties may arise when imposing
improvements where air pollution impacts are relatively small (“cleaning already
clean air”) or in peripheral regions.

4.1.2. Focusing on particulate matter

It became clear during the first set of policy options that the reduction of NOx, SO2,
ammonia and PM2.5 are collinear. In other words, reducing PM2.5 concentrations also
reduces emissions of NOx, SO2, ammonia and PM2.5, albeit not in equal proportions.
Thus, during subsequent model runs, several particulate matter emission reduction
options were investigated. Three target setting principles for particulate matter were
explored62:

• A “capping value” concept. This requires PM2.5 concentrations in urban
background air sheds everywhere in the EU-25 to be below a certain upper
level. The RAINS model, with the City-Delta corrected urban concentrations of
61 Given that it was also known that it was possible to incorporate road transport and international

maritime emissions reduction into the MTFR, subsequent model rounds in the Impact Assessment

include these sources.

62 The results of these scenario runs are described in IIASA Report B - Target Setting Approaches for
Cost-effective Reductions of Population Exposure to Fine Particulate Matter in Europe (IIASA,
February 2005)

Drucksache 16/1814 – 126 – Deutscher Bundestag – 16. Wahlperiode

particulate matter, is capable of reproducing concentrations of PM2.5 at urban
background locations, although the model cannot reproduce “hot spots” in
street canyons nor can it account for components derived from organic aerosol.
A separate study has been done by the EEA63 on the increment in narrow street
canyons. The study shows that in such street canyons with heavy traffic the
PM2.5 levels could be up to 10 ug/m3 higher than the urban background with
the present vehicle fleet and about 5 ug/m3 higher than the urban background
with the vehicle fleet of the 2020 CAFE baseline. Hence, an adjustment64of up
to 5 μg/m3 would need to be added to computed values by the City-Delta
methodology to obtain concentrations at street canyons. To be feasible, a
generally applicable “cap” must be achievable everywhere. In some cities
(excluding the port cities) in the model calculations is was not possible to
reduce urban background PM2.5 in 2020 much below modelled concentrations
of 15 μg/m3, even with full application of all available control measures at the
European scale. On the other hand, there are very few places where a modelled
level of 20 μg/m3 would remain exceeded. Thus, a sequence of scenarios has
been calculated to bring modelled PM2.5 concentrations in urban background
air below uniform target levels of 15, 15.5, 16, 16.5, 17 and 19 μg/m3.

– A “gap closure” approach. The gap closure is a fixed percentage of
improvement in PM2.5 exposure for each grid, between the baseline scenario
and the MTFR. As vehicle emission standards need to be introduced as a
Community-wide measure, and not for individual Member States, the RAINS
optimization exploring the scope for additional measures on stationary sources
was carried out twice for given environmental targets, with and without further
road measures introduced in all Member States. With equal environmental
objectives, a comparison of the emission control costs between these two cases
allowed conclusions to be drawn about the cost-effectiveness of further road
measures.

– A “Europe-wide” target. This would explore the cost-effectiveness of
measures to achieve health improvements irrespective of the location of the
improvement. The optimization identified those measures in the EU-25 that
would achieve a given improvement of years of life lost (YOLL) at least cost.
The location where the health benefit occurs was thus not taken into account,
and the optimization allocated measures to those regions where benefits are
largest across the EU. The benefit of a unit of reduced PM2.5 concentration,
however depends on the population density in the affected area. The more
people living in an area, the more effective will be a reduction of PM
concentration in that area. While this approach optimizes the use of resources,
it might compromise on (perceived) equity aspects, because not all Member
States may receive equitable environmental improvements.
63 Air pollution levels at hotspot areas of selected cities, EEA ETC/ACC Final report June 2005 draft
64
As the EMEP model, on which the RAINS model rests its calculations of PM dispersion, does not

quantify contributions from natural sources, i.e., mineral dust, sea salt and biogenic material and of
secondary organic aerosols, an assumption has been made that the mineral contribution amounts in
Mediterranean countries at 3 μg/m3, in Scandinavia at 1 μg/m3, and all other countries at 2 μg/m3.

Deutscher Bundestag – 16. Wahlperiode – 127 – Drucksache 16/1814

In addition two other proposals were made on setting targets. These will be explored
in detail during the impact assessment of the National Emissions Ceilings Directive.

It was decided to refine further the three target setting approaches (“capping”,
“country specific gap closure” and “EU-wide target setting”) with three ambition
levels for PM and the carrying out of sensitivity analysis and robustness tests.65

– The ”capping” approach showed difficulties bringing annual mean PM2.5
concentrations below 17 µg/m3 in urban areas with high local emission
densities (inter alia, due to PM emissions from ships in harbours) and the low
wind speeds given in the available data set. If two of the binding cities were
excluded66 from the optimization process the cost-effectiveness of this
approach improved. However, this approach still remained less cost-effective
and triggered an uneven distribution of costs and benefits across Member
States.

– Uniform “gap closure” in terms of health-relevant PM2.5 exposure was
performed including a sensitivity case with a cut-off threshold of the
concentration-response function at 7µg/m3 for less polluted sites.67 This
approach increased equity and efficiency, reducing annual costs for a given
scenario by €800 million for e.g. 80% of the MTFR at EU level, with visible
effects for those Member States where the lack of cut-off entailed high
abatement costs with only marginal benefits.

– Finally, the Europe-wide approach of improvement of PM2.5 health impacts
irrespective of their locations, remained most cost-effective, but also superior
to the other approaches for many equity criteria. However, the difference
between alternative approaches were narrow, due to the adjustments made in
the target setting (exclusion of some of the "driving grids or cities" and cut-off
for PM2.5 exposure) (Figure 11).

A preliminary cost-benefits analysis (where benefits are calculated only from
reduced exposure to particulate matter) of these scenarios showed that benefits are
higher than costs, even with low estimates of benefits. The gap closure approach was
proven to be more cost-effective and have higher benefit/cost ratio than the limit
value approach at comparable ambition levels. This empirical result was an expected
outcome as the gap-closure approach is theoretically more efficient than the limit
value approach.
65 The results of these scenarios are described in IIASA Report C - Exploratory CAFE scenarios for

further improvements of European air quality (IIASA, March 2005)
66 These cities were Genoa and Thessaloniki. While there are obvious uncertainties in the present

modelling approach that call for caution in calculating results for individual cities, the general features

of such a limit value approach and of potential exceptions will hold also for practical implementation in
the real world.

67 There is some logic for the use of this somewhat arbitrary cut-off of 7µgm-3 as this lies at the lower end
of the range of concentrations used to derive the dose response function from epidemiological studies.

Drucksache 16/1814 – 128 – Deutscher Bundestag – 16. Wahlperiode

Figure 11: Cost-effectiveness of the target setting approaches: Emission control costs
(billions of euros per year) vs. Years of life gained (million years)

0,0

4,0

8,0

12,0

16,0

0 5 10 15 20 25 30 35 40
Cumulative years of life gained (million years)

"Capping"

Gap
closure

EU wide
objective

bi
llio

ns
o

f e
ur

os

[137] [97]

[Cumulative life years lost (million years)]
[107][117][127]

STOP

MTFR

[96]

41

Current
legislation

Source: IIASA Note: The line for the "capping" approach does not continue to the MTFR, where the
concentration limit approach becomes infeasible, because the limit value will be exceeded in some area, even if
all countries are at MTFR emissions.

Deutscher Bundestag – 16. Wahlperiode – 129 – Drucksache 16/1814

4.2. Final set of policy options

The different environmental and health targets on PM, acidification, eutrophication
and ozone were combined in a joint optimization. Such an approach builds on
important economic synergies between control measures for different air quality
problems. PM and ozone are complementary targets, and appropriate combination of
ambition levels for different end points needed further exploration. For that purpose,
a screening of ambition levels for the individual optimization runs was performed,
calculating 24 sets of different ambition levels of joint optimization scenarios. This
resulted in 360 model runs.68 The proposed ambition levels combine the health-
related PM2.5 and ozone objectives with those of environmental protection for
acidification, eutrophication and ozone damage to vegetation (Table 8).

Table 8: Definition of three ambition levels for interim targets for air pollution up to
2020

Ambition level
2000 Baseline

2020
Scenario

A
Scenario

B
Scenario

C
MTFR69

EU-wide cumulative
years of life years lost
(YOLL, million)

203 137
(0%)

110
(65%)

104
(80%)

101
(87%)

96
(100%)

Acidification (country-
wise gap closure on
cumulative excess
deposition)70

120 30
(0%)

15
(55%)

11
(75%)

10
(85%)

2
(100%)

Eutrophication
(country-wise gap
closure on cumulative
excess deposition)71

422 266
(0%)

173
(55%)

138
(75%)

120
(85%)

87
(100%)

Ozone (gap closure on
SOMO35)72

4081 2435
(0%)

2111
(60%)

2003
(80%)

1949
(90%)

1895
(100%)
68 These model runs are reported in IIASA, A final set of scenarios for the Clean Air for Europe (CAFE)

programme, CAFE Scenario Analysis Report #6, April 2005
69 The percentage refers to the difference between Baseline 2020 and Maximum Technically Feasible

Reduction (MTFR)

70 Average accumulated excess acidification equivalents per hectare
71 Average accumulated excess eutrophication equivalents per hectare
72 SOMO35 in parts per billion days

Drucksache 16/1814 – 130 – Deutscher Bundestag – 16. Wahlperiode

5. IMPACT ASSESSMENT OF THE OPTIONS

Throughout this section the three ambition levels for interim objectives till 2020,
labelled Scenarios A, B and C will be assessed. The overall purpose is to have
enough information to decide which of the Scenarios would for the basis for the
interim objective.

The three levels of ambition between the baseline and the maximum technically
feasible reduction were subjected to a full cost-benefit analysis. This was
complemented by analysis with the GEM-E3 general equilibrium model to see the
impact on competitiveness, employment and other general equilibrium effects. This
impact assessment does not include the detailed assessment of individual measures73
of each interim objective, as this will be performed in due time together with each
legislative proposal.

The impact assessment of the range of policy options responds to the objectives of
the Lisbon and Sustainable Development strategies. On the one hand it aims at
defining the most effective and efficient regulation as part of the efforts of the
European Institutions and Member States to fulfil the Lisbon objectives in 2010; on
the other hand it ensures policy coherence between the economic, environmental and
social dimensions. Following the principle of proportionality, the analysis focuses on
the most significant impacts and the most important distributive effects, and the
depth of analysis matches the significance of the impacts.74

5.1. Impact on pollutant emissions

The reduction in pollutant emissions corresponding to the different ambition levels is
not homogeneous across pollutants and Member States. The dispersion is more
evident in the case of SO2 and PM, for which the levels of ambition are the greatest,
together with NH3. Tables 9 and 10 indicate that the reduction effort for different
pollutants varies. For instance, under Scenario B, SO2 emissions would be reduced
by a further 44% but VOC emissions by only 17% from where they would be with
current legislation in 2020. Furthermore, the reduction efforts in different Member
States vary depending on the pollutant and the abatement options. (See Figure 12 for
details.)

Table 9: Emission reductions for the three ambition levels in 2020, in kilotonnes
Baseline Ambition level in 2020
Emissions

in 2000
emissions
in 2020

Scenario
A

Scenario
B

Scenario
C

SO2 8735 2805 1704 1567 1462
NOx 11581 5888 4678 4297 4107
VOC 10661 5916 5230 4937 4771
NH3 3824 3686 2860 2598 2477
PM2.5 1749 964 746 709 683

Source: RAINS

73 Except for the impact of proposed limit values for PM 2.5 which is described in Chapter 7.
74 “Impact Assessment: Next Steps - In support of competitiveness and sustainable development”,

SEC(2004)1377

Deutscher Bundestag – 16. Wahlperiode – 131 – Drucksache 16/1814

Table 10: Emission reductions for the three ambition levels in relation to baseline
emissions in the EU in 2020, in percentage

Baseline Ambition level in 2020
emissions
in 2020

Scenario
A

Scenario
B

Scenario
C

SO2 100% -39% -44% -48%
NOx 100% -21% -27% -30%
VOC 100% -10% -17% -19%
NH3 100% -22% -30% -33%
PM2,5 100% -23% -26% -29%

Source: RAINS

Figure 12: Emission reductions for the three ambition levels and the MTFR in relation
to baseline emissions in Member States in 2020 [Baseline emissions in 2020 = 100%]

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

SO2 Scenario A Scenario B Scenario C

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

NOx Scenario A Scenario B Scenario C
Source: RAINS. Note: The grey area represents the scope for emission reduction in the MTFR in relation to
baseline emissions in 2020

Drucksache 16/1814 – 132 – Deutscher Bundestag – 16. Wahlperiode

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

VOC Scenario A Scenario B Scenario C

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

NH3 Scenario A Scenario B Scenario C

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

PM2.5 Scenario A Scenario B Scenario C
Source: RAINS. Note: The grey area represents the scope for emission reduction in the MTFR in relation to
baseline emissions in 2020

Deutscher Bundestag – 16. Wahlperiode – 133 – Drucksache 16/1814

5.2. Impact on air quality and human health

5.2.1. Loss in life expectancy attributable to exposure to fine particulate matter

Exposure to fine particulate matter has several severe effects on human health and is
clearly linked to increased mortality and morbidity. The mortality effect may be
expressed as changes in life expectancy or as numbers of premature deaths. Scenario
B would, on average, reduce loss of life expectancy due to exposure to PM2.5 to 4.1
months instead of 5.5 months in the baseline for 2020. Changes in life expectancy
could also be expressed as changes in the cumulative number of life years lost in the
EU: the RAINS model estimates that in 2020 the cumulative number of years of life
lost (EU-wide YOLL) is about 137 million, and Scenario B would reduce number of
life years lost to about 104 million.

Based on the calculations from RAINS further analysis within the CBA framework
allowed an assessment of the number of people dying prematurely every year.
Scenario B would correspond to a reduction of premature deaths by about 66,000
people per year compared with the baseline for 2020. Regional differences in the EU
are projected to prevail (Figure 13) and some regions in North-West EU would still
have loss of average life expectancy in the range of 9 to 12 months in 2020.
However, all regions in the EU would see a major improvement over and above the
baseline in 2020 with Scenario B.

Figure 13: Loss in life expectancy attributable to anthropogenic PM2.5 (months) for the
three ambition levels in 2020 – compared with 2000 and the baseline in 2020
2000 Scenario B in 2020
Baseline 2020 Scenario A in 2020 Scenario C in 2020
Source: RAINS. Note: Calculation results are based on meteorological conditions of 1997.

Drucksache 16/1814 – 134 – Deutscher Bundestag – 16. Wahlperiode

5.2.2. Health effects attributable to exposure to ground-level ozone

Scenario B would considerably reduce the number of deaths brought forward due to
ozone exposure75 all over the EU (Figure 14). At the same time, other health-related
impacts due to ozone would also be reduced. It is estimated that almost 5000 people
less would die prematurely due to ozone exposure in Scenario B, bringing the
number down to 17,000 by 2020. In Scenario A, the reduction would be about 1000
people less. However, in Scenario C the situation is no longer projected to improve.

Reaching the interim objective would bring about considerable improvement but
some regions would still have elevated levels of ozone in 2020.

Figure 14: Health effects attributable to exposure ground-level ozone (ppb.days) for the
three ambition levels in 2020 – compared with 2000 and the baseline in 2020
2000 Scenario B in 2020
Baseline 2020 Scenario A in 2020 Scenario C in 2020

Source: RAINS. Note: Calculation results are based on meteorological conditions of 1997.

75 above a cut-off of 35 ppb

Deutscher Bundestag – 16. Wahlperiode – 135 – Drucksache 16/1814

5.3. Direct costs of measures

Annual abatement costs of the measures included in the three ambition levels are
estimated to vary from €5.9 billion in Scenario A to €14.9 billion in Scenario C.
Table 11 disaggregates the costs by pollutant and major source. It should be noted
that the impact in terms of health and environment is not the same between different
scenarios. For instance, the difference between Scenarios A and B is not the same as
the difference between B and C.

Table 11: Annual abatement cost per pollutant for each ambition level in 2020 (millions
of euros)
Ambition level Scenario A Scenario B Scenario C MTFR
SO2 800 1,021 1,477 3,124
NOx 903 2,752 4,255 6,352
NH3 1,785 3,770 5,410 13,584
Primary PM 2.5 411 695 908 12,335
VOC 157 573 935 2,457
Road transport (both PM2.5 and NOx) 1,868 1,868 1,868 n/a
Total 5,923 10,679 14,852 over 39,720
Source: RAINS.

Figure 15 gives a sectoral breakdown of the costs of the measures. As further
explained in Chapter 6, this is a preliminary estimate that does not take into account
substantial issues:

– For transport, the costs forecast relate to one emission reduction scenario based
on a single source of data. Future emissions standards will be defined on the
basis of a more detailed impact assessment (See Section 5.5.2.). Accompanying
and non-technological measures may also influence in a positive way the cost-
effectiveness of these standards.

– For energy, additional measures of energy efficiency could trigger additional
emissions reduction.

– For agriculture, estimates do not take into account the impact of the Common
Agricultural Policy reform or the implementation of the nitrate and IPPC
directives (see section 5.5.1). All these elements will be analysed in depth
during the review of the national emission ceilings. The objective will be to
promote measures which are synergetic for the various environmental media
and at the same time to help achieve various environmental objectives with
cost effective measures. Moreover, the decrease in ozone damage to crops has
to be taken into account (see section 5.7.5.). For Scenario B, it would amount
to 415 million euros in 2020, corresponding to more than 10% of the direct
cost of the measures for Agriculture.

Drucksache 16/1814 – 136 – Deutscher Bundestag – 16. Wahlperiode

Figure 15: Sectoral distribution of the cost of the measures associated with each
ambition level in 2020 (millions of euros)

0

2000

4000

6000

8000

10000

12000

14000

16000

Scenario A Scenario B Scenario C

M
ill

io
n

€/
ye

ar

Agriculture (animals)

Agriculture (crops)

Small Combustion Plants

Large Combustion Plants (industry)

Large Combustion Plants (power and heat)

Transport

Fuel production and conversion

Other industrial process and waste

Source: RAINS.

5.4. Uncertainties

If the costs and benefits of air pollution control were known with absolute confidence
there would be no problem in comparing the two. However, costs and benefits are
subject to uncertainties, some of which (on both sides of the cost-benefit equation)
are significant. This section provides an analysis of the major sources of
uncertainty76, as well as an indication of the direction and potential importance of the
biases. In the following section, a sensitivity analysis is provided on the most
relevant uncertainties.

5.4.1. Modelling framework

The peer-review of the RAINS integrated assessment model (which underpins the
development of the strategy) has highlighted uncertainties due to (1) biases in the
model; (2) a lack of scientific understanding; and (3) and an inability to predict
future behaviour. The model has been constructed by the International Institute for
Applied Systems Analysis (IIASA) so as to be conservative in its performance and
assumptions. Such systematic biases therefore tend toward overestimates of
parameters like costs and favour a strategy of lower ambition.

The biggest gap in the scientific understanding for this Thematic Strategy relates to
the attribution of effects to individual species of particle or other pollutants: The
discussion of the potential effects of different toxicities for the components of the
76 An extended description of the uncertainties in the quantification of benefits with both RAINS and

CBA, but also in the dispersion modelling work carried out using the EMEP model and the costs

analysis carried out using the RAINS model is provided in Volume 3: Uncertainty of the Methodology
for the Cost-Benefit Analysis for the CAFE Programme (AEAT, March 2005), as well as in the Review
of the RAINS Integrated Assessment Model (See Annex 1)

Deutscher Bundestag – 16. Wahlperiode – 137 – Drucksache 16/1814

PM mixture, i.e. primary PM2.5, sulphates and nitrates has do be done in a qualitative
way, as attempts to quantify long term health impacts of individual components have
not a sufficient scientific underpinning at the moment. The Systematic Review of
Health Aspects of Air Pollution in Europe (WHO, June 2004) considered this issue
and noted that toxicological studies have highlighted that primary, combustion-
derived particles have a high toxic potency; and that several other components of the
PM mix – including sulphates and nitrates – are lower in toxic potency.
Unfortunately there is a lack of any established risk estimates for the different
components. It is therefore currently not possible to precisely quantify the
contributions from different sources and different PM components to health effects.
However, we believe there is value in exploring this as a sensitivity analysis, for
example to differentiate between policies that reduce primary rather than secondary
particles from combustion. (See section 5.5.5. for a sensitivity analysis. As this
strategy is an integrated strategy which addresses the natural environment as well as
health, the results of the analysis (emissions reductions, costs) do not change
significantly from the proposed scenarios).

The choice of meteorological year is important for modelling pollutant dispersion
and chemistry. The economic analysis has been conducted on the basis of a single
meteorological year (1997) due to resource and timing constraints. It is true that air
quality can vary significantly between years, but 1997 was chosen as it represents an
average year. However, more detailed baseline estimations of effects have also been
undertaken which use four different and contrasting meteorological years (1997,
1999, 2000 and 2003).

There may be biases (with no indication of the direction) due to the quality of
emission inventories, which will vary between pollutants (SO2 emissions, for
example, are known with a far better level of confidence than PM emissions).
Negative bias may also arise because of the potential for switching to cleaner fuels or
production systems by the baseline year for reasons unrelated to air quality
regulation. Positive bias may arise through possible legislative change in other areas
that could cause emissions to increase.

Omission of some existing and future abatement measures from the RAINS model
could lead to an overestimation of costs and underestimation of the maximum
feasible reduction. (See below sensitivity analysis on Agriculture and Transport).
Moreover, ex-ante cost estimates are often considerably higher than the real costs of
measures as evaluated ex-post. The study performed by AEA Technology for the UK
DEFRA in December 2004, clearly stated that the ex-ante costs of the UK National
Air Quality Strategy were overestimated by up to a factor of 5 (c.a. ex-ante estimate
of £16-23 billion for the period 1990 to 2001 compared to the ex-post cost estimate
of the order of €3 billion for the same period).

5.4.2. Health Impacts of air pollution

For the quantification of the mortality impact of exposure to fine particles, the central
estimate of the dose-response function for particulate matter, adopted by WHO Task
force on health for IAM, has been chosen. This may mean that we seriously

underestimate the health impacts as well as overestimate them: The results given
here can be used with results from the analysis of scenarios to define probability

Drucksache 16/1814 – 138 – Deutscher Bundestag – 16. Wahlperiode

distributions – simply divide values by a factor 2.5 to obtain the lower end of the
95% confidence interval and multiply by 1.7 to obtain the upper end.

The CAFE-CBA Methodology has identified a number of health impacts which was
not felt appropriate to include in the core analysis. Sensitivity analysis has been
undertaken on these effects to assess their importance. In terms of the number of
additional health impacts for PM2.5, the sensitivity analysis shows these additional
impacts (Restricted Activity Days and additional cases of Chronic Bronchitis) are
important, with hundreds of millions of additional potential cases or days of illness.
They represent additional benefit in monetary terms between 13% and 43%,
depending on the valuation method for the core mortality benefits. In terms of the
number of additional health impacts for ozone (mainly Allergic rhinitis
consultations), the sensitivity analysis shows these additional impacts are important
in monetary terms, between 63% and 93% additional benefits, although they are not
relevant compared with PM2.5 impacts.

5.4.3. Non-health and ecosystem impacts

The integrated assessment modelling underestimates ecosystem sensitivity by
ignoring the 5% most sensitive ecosystems in each grid cell of the European
modelling domain. Moreover, the coarse scale atmospheric dispersion modelling (50
km resolution) can significantly underestimate actual deposition to sensitive
ecosystems. There is a tendency for sensitive ecosystems to be situated in elevated
regions which receive greater rainfall and orographically enhanced deposition.

In theory, it would be possible to go straight from critical loads or critical levels
exceedance to valuation of benefits for ecosystems, were suitable data available from
willingness to pay studies. Although the literature in this area is growing, it is not
currently adequate for a Europe-wide appraisal such as this. Earlier studies tended to
take a very simplistic perspective of impacts on ecosystems rendering them
unsuitable for use in a policy context.

One area where there is potential for short term success in quantification of the
monetary value of pollution damage relates to ozone effects on forests, as it has been
done for Sweden. However, an in-depth analysis using the same methodology across
Europe, capable of providing input to the core quantification, was not undertaken in
the context of this Thematic Strategy, given the complexities of modelling forest
growth over decades and of forecasting trends in forest management practices in
response to changing supply of timber and demand.

It was not possible to quantify the damage to cultural heritage in the same way as for
materials in utilitarian applications because of a lack of data on stock at risk and
restoration and other costs.

5.4.4. Conclusions

The costs and benefits of different Scenarios have been calculated by using the
meteorological year of 1997. While 1997 is on the average a rather typical
meteorological year, some uncertainties are inherent in the analysis. On the other

hand, as the costs and benefits relate changes between the baseline in 2020 and

Deutscher Bundestag – 16. Wahlperiode – 139 – Drucksache 16/1814

different scenarios in 2020, the uncertainty of the difference is considered relatively
small.

The probability that the total benefit for each scenario according to core estimates
would exceed the total cost is given by Figure 16. For Scenario A and Scenario B
there is a high probability that incremental benefit will exceed incremental cost,
irrespective of the approach taken to mortality valuation. For Scenario C there is
again a high probability of excess benefit in all cases except where mortality is
valued using the median VOLY, in which case the probability falls to a little under
50%. For the MTFR scenario (Maximum Technically Feasible Reduction according
to the assumptions and measures included in the RAINS model) there is little
probability of incremental benefit exceeding cost, irrespective of the approach taken
for mortality valuation.

Figure 16: Comparison of the probability of benefit exceeding cost

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VOLY – median VOLY – mean VSL – median VSL – mean

pr
ob

ab
ili

ty
b

en
ef

its
>

c
os

ts

Scenario A Scenario B Scenario C MTFR

Note: This does not include consideration of sensitivity to cost uncertainty or unquantified benefits.
Source: CAFE CBA.
Based on the significant body of evidence (see AEA Technology, 2005) that
forecasted costs of pollution control are generally overestimated, the results
summarised above were combined with sensitivity analysis on estimated costs for
each scenario and on the magnitude of non quantified benefits. Variation in costs had
little effect on scenarios A or B. The magnitude of unquantified benefits only
became significant in one case, for Scenario B, where cost was assumed to be
underestimated by the RAINS model by 20%. These are considered to be unlikely.

Based on the uncertainty analysis the following conclusions are drawn::

• Scenario A: The conclusion that benefit would exceed cost across the EU25 for
Scenario A is robust according to the uncertainty assessment performed, with a

probability in excess of 95% of gaining a net benefit.

Drucksache 16/1814 – 140 – Deutscher Bundestag – 16. Wahlperiode

• Scenario B: Again, the analysis suggests that the conclusion that benefit would
exceed cost across the EU25 is robust according to the uncertainty assessment
performed, though with a slightly reduced probability compared to Scenario A.

• Scenario C: There is certainly a case made for moving to Scenario C, though for
stakeholders who prefer to use the median VOLY for mortality valuation it is
clearly less robust than the case for moving to Scenario B.

5.5. Sensitivity analysis

Sensitivity runs were carried out by IIASA with the RAINS model.77 The impact of
variations in the baseline scenario (e.g. using national projections) were carried out
for those Member States that had provided their national emission projections up to
2020. A total of 10 Member States had provided a scenario.78 In some cases there
was a discrepancy between the Member States projection and the CAFE baseline.
However, in most cases the Member States projection did not include climate change
measures (to be compatible with the Kyoto Protocol). Further, the emission
projections were not meeting the obligations of the National Emissions Ceiling
Directive. Finally, at EU level the discrepancies were still rather small given the fact
that there are overall uncertainties in making projections up to 2020. Therefore, the
uncertainties relating to the differences between Member States projections and the
CAFE baseline were considered relatively small and not of concern for setting the
interim objectives. It was noted, however, that during 2005 the Member States and
the Commission need update the emission projections up to 2015 and 2020. This
work underpins the urgency of the analysis to set up the National Emission Ceilings.

5.5.1. Influence of the chosen environmental endpoints

The CAFE scenarios identify sets of emission control measures that simultaneously
achieve the environmental targets for the four endpoints of concern (human health
effects from PM, acidification, eutrophication and ground-level ozone). Thereby, in a
cost-optimized solution each measure is justified by concrete environmental
achievements for at least one of these endpoints.

There is no objective procedure for allocating weights to the different environmental
endpoints on a purely scientific basis. In order to provide objective elements for the
judgment from decision maker, a further sensitivity analysis has been carried out
targeting on health impacts attributable to PM2.5 only.
77 The results are be reported in IIASA, A final set of scenarios for the Clean Air for Europe (CAFE)
programme, CAFE Scenario Analysis Report #6, April 2005
78 For details, see Sensitivity analysis with national energy and agricultural projections in IIASA:

“Exploratory CAFE scenarios for further improvements of European air quality”. Background paper
for the meeting of the CAFE Working Group on Target Setting and Policy Advice, March 17, 2005

Deutscher Bundestag – 16. Wahlperiode – 141 – Drucksache 16/1814

Table 12: Emission control costs for the single-effect and multi-effect optimization cases
(million €/yr)
Scenario A Scenario B Scenario C
Costs PM

optimized
Joint

optimization
PM

optimized
Joint

optimization
PM

optimized
Joint

optimization

MTFR

Road 1 868 1 868 1 868 1 868 1 868 1 868 1 868
SO2 885 800 1 265 1 021 1 911 1 477 3 124
NOX 168 903 511 2 752 1 597 4 255 6 352
NH3 1 489 1 785 3 598 3 770 5 005 5 410 13 584
PM2.5 565 411 837 695 1 045 908 12 335
VOC 0 157 0 573 0 935 2 457
Total 4 974 5 923 8 080 10 679 11 426 14 852 39 720
Source: RAINS

Difference emerge not only in overall emission reduction costs, but also in terms of
reduction requirements for individual pollutants. As shown in Table 12, with the
chosen target levels a purely health- and PM-driven optimization suggests more
emphasis on the reduction of SO2 emissions - and obviously on PM2.5 emissions -
than a case including ecosystem impacts. In contrast, a strategy including ecosystem
targets (including ground-level ozone) asks for larger NOx and VOC reductions. The
pressure on NH3 emissions is similar in both cases.79 In summary, it can be stated
that in the central Thematic Strategy ambition levels the stringency of SO2 and
PM2.5 reductions are determined at the margin by the selected health objectives,
while ecosystems-related targets (including ozone) control the resulting NOx and
VOC reductions. The required levels of cuts in ammonia emissions are determined
by both health and ecosystems targets.

Finally, a strategy targeting at PM Health impact only would already deliver
ancillary benefits for ozone, eutrophication and acidification. Reaching the level of
ambition of Scenario B for PM2.5 health objective only would deliver a greater
improvement in eutrophication and acidification than additional targets
corresponding to the Scenario A of ambition. This is due to the abatement in primary
pollutant that contribute not only to PM2.5, but also to those environmental objectives
(namely SO2 and NH3). This is not the case for ozone where additional effort would
be required from the ancillary benefits of the level of ambition of Scenario A for
PM2.5 only to the achievement of the level of ambition A for ozone.
79 The joint optimization asks for some more ammonia reductions in the EU-25 as a whole than PM

optimization. This is caused by the spatial differences of health and ecosystems impacts. Cost-effective
achievement of the health targets require more ammonia reductions in central Europe (Germany, Czech
Republic, Poland), the UK and in Italy, while the ecosystems targets imply more stringent ammonia
measures in Austria, Denmark, France, Ireland, Spain, Greece, Sweden, Finland. To meet the combined
targets in each country requires therefore a wider Europe-wide spread of ammonia reductions than any

optimization for a single effect alone.

Drucksache 16/1814 – 142 – Deutscher Bundestag – 16. Wahlperiode

Table 13: Ozone and environmental ancillary benefits

Scenario(see Table 8)

Optimization based on: A B C

All targets 60% 79% 89% Eutrophication (country-
wise gap closure on
cumulative excess
deposition, % MTFR)

PM only 47% 65% 79%

All targets 78% 90% 95% Acidification (country-wise
gap closure on cumulative
excess deposition, %
MTFR)

PM only 77% 89% 94%

All targets 53% 77% 88% Ozone (gap closure on
SOMO35, % MTFR) PM only 16% 24% 42%

Source: RAINS

5.5.2. Agriculture

Given that this Strategy has highlighted the importance of ammonia reduction, a
specific uncertainty analysis was carried out on this. The first analysis was to check
whether there were differences between the RAINS cost and activity data and those
supplied by Member States. For this analysis a revised set of RAINS cost curves was
prepared that was first used for the scenarios incorporating the national activity
projections (nine Member States had provided these). The verified cost curves
include improved assumptions on incorporation of solid pig and cattle manures and
result in lower costs of these options than originally estimated in the RAINS model.
According to the preliminary analysis of IIASA, the annual cost of Scenario B is
expected to be about €0.6 billion lower. Thus, the annual abatement costs that were
estimated at €3.8 billion per annum are more likely to be €3.2 billion in 2020.

All the estimates in this impact assessment have not taken into account three
developments which influence ammonia emissions. These are the reform of the
Common Agricultural Policy (CAP), the implications of the implementation of the
Nitrates Directive, and the impacts of reducing ammonia emission through the IPPC
Directive. The main reason for not estimating these effects is the fact that it is not
known in enough detail how Member States will apply CAP and what the impacts of
the two directives are on emissions of ammonia at national and EU level.

IIASA recently implemented a CAP reform agricultural scenario developed with the
CAPRI model by the University of Bonn. It performed an initial analysis of its
impact on ammonia emissions and the costs of achieving Scenario B when a CAP
scenario set of cost curves and emissions is used. In this initial analysis, ammonia
emission would decrease in 18 Member States and increase in 7 up to 2020. The
overall effect of the CAP reform – according to these preliminary estimates – would
be a reduction of ammonia emissions by 210 kilotonnes. This change is not
insignificant as it would be about 10% of the estimated need for a reduction of

Deutscher Bundestag – 16. Wahlperiode – 143 – Drucksache 16/1814

ammonia emissions between the baseline in 2020 and Scenario B in 2020.80 These
impacts are also likely to be important at Member State level. Thus, they need to be
carefully reviewed with the Member States during revision of the NEC Directive.
Preliminary analysis indicates that the CAP reform could reduce the projected annual
compliance cost of reaching Scenario B level of ammonia reduction by some €0.5
billion in 202081.

Due to lack of data, it has not been possible at this stage to conduct a quantitative
analysis on the possible impact of implementation of the Nitrates Directive. This
analysis will be done during revision of the NEC Directive.

A preliminary analysis was carried out on how much the compliance costs would be
reduced to meet Scenario B by 2020, if Member States applied the IPPC Directive
for ammonia emissions in the agricultural sector. Full application of the IPPC
Directive would reduce annual costs by about €0.9 billion per annum. Optimistically
full implementation of IPPC could remove an additional 150 to 230 kilotonnes of
ammonia by 2020. If it can be assumed that the IPPC Directive is fully applied, the
annual compliance costs of Scenario B would be reduced by €0.6-€0.9 billion (see
Table 14 for a summary of the uncertainty analysis).

In sum, when analysing the impact of four different sources of uncertainties in the
emission reduction of ammonia – abatement cost data and the impact of CAP reform,
Nitrates Directive and IPPC Directive – it is possible that on the one hand the cost
estimates in ammonia emissions are overestimated in this Strategy, and on the other
hand the baseline for NH3 is likely to underestimate the actual reduction up to 2020
by 360-450 kt. All together, the compliance costs of Scenario B could be between
40% and 50% lower than estimated. This issue will be analysed carefully during
revision of the NEC Directive.
80
The difference is about 3% of the baseline emissions of ammonia in 2020.
81 The CAP reform will also have an impact on the use of fertilisers. The European Fertilizer

Manufacturers Association expects a 5.1% decrease of nitrogen mineral fertilizer use in the EU15 in the
period 2003 to 2013, essentially due to the recent CAP reform.

Drucksache 16/1814 – 144 – Deutscher Bundestag – 16. Wahlperiode

Table 14: Change in compliance costs of ammonia of Scenario B with updated
cost data, the implications of the CAP reform and assuming vigorous
implementation of the IPPC directive.

Annual cost in 2020
Lower

estimate
Higher

estimate
€bn % €bn %
Original estimate of the compliance costs to reach
Scenario B 3.77 3.77

Source of uncertainty:
• Updated cost estimate taking into account

reduced costs of manure management -0.60 -16% -0.60 -16%
• Possible impact of CAP reform (reduction

emissions in the baseline by 210 kt) -0.46 -12% -0.46 -12%
• Impact of compliance costs due to vigorous

implementation of the IPPC directive
(reduction emissions in the baseline by 150-
230 kt) -0.60 -16% -0.85 -23%
Sub-total cost reduction -1.66 -44% -1.91 -51%

Compliance cost for Scenario B taking into
account all uncertainties 2.11 1.86

Source: RAINS

5.5.3. Road Transport

In all three Scenarios A, B and C it had been assumed that emissions from road
transport sector could be reduced by lowering emission limit values under current
legislation. The current standards for new passenger cars and light commercial
vehicles (Euro 4) have been in force since the beginning of 2005. For heavy duty
vehicles, Euro 4 emission limit values are entering into force in October 2005 and
Euro 5 in October 2008. Due to the internal market rules of the EU it is not possible
to have different vehicle emission limits across the Member States. Thus under
Scenarios A, B and C it was assumed that all Member States apply tighter emission
limits.

The RAINS model had included such further emission reductions for passenger cars
and light duty vehicles assuming that they would be mandatory from 2010 onwards
and would reduce both particulate matter and NOX emissions82. The main source for
the light duty vehicle emissions reductions was RICARDO (2003)83.For new heavy
duty vehicles, the assumption was that tightened emission limit values would take
effect from 2013 in all Member States. The cost data for the emission reductions
were introduced to the RAINS database in the same manner as for emission
reductions from all other sectors.
82 See Section 2.1 of CAFE Report #4: (http://www.iiasa.ac.at/rains/CAFE_files/CAFE-B-full-feb3.pdf).
83 RICARDO, Support for updating the RAINS model concerning road transport – final report, November
2003, available at http://www.citepa.org/forums/egtei/RD03_162101_5.zip

Deutscher Bundestag – 16. Wahlperiode – 145 – Drucksache 16/1814

It was important to see whether the assumed emission reductions in the road
transport sector were cost-effective in relation to the possibilities of reducing NOX
and PM emissions from other sectors. For this purpose, three scenarios were run with
the RAINS model. The environmental and health objectives of Scenarios A, B and C
were maintained up to 2020. However, under these new scenarios it was assumed
that the road transport sector would not be able to reduce NOX and PM emissions
beyond current legislation. This would imply that the estimated annual compliance
costs of the road transport sector of €1.9 billion would be saved in 2020. To maintain
the achievement of the health and environmental objectives, other sectors would
need to compensate for the shortfall and take additional measures. Of specific
interest was whether the costs of Scenarios A, B and C without road emission
reduction measures would be higher or lower than Scenarios A, B and C with road
measures. From these alternative model runs (Table 15) it became evident that if the
environmental ambition level of Scenario A were maintained, other sectors would
need to reduce emissions so that their annual compliance costs would increase by
€2.1 billion in 2020. This compares with the savings of €1.9 billion in 2020 if road
emission measures are not undertaken. Thus, under Scenario A the EU as a whole
would have additional compliance costs of €200 million if road emission measures
were not taken. In other words, the modelling suggests that including road sector
measures to Scenario A was cost-effective compared with other sectors.

Table 15: Impact of excluding additional road emission reduction measures on annual
compliance costs in 2020, billions of euros

Scenario A
Scenario

B
Scenario

C MTFR

Core scenarios
Measures reducing emissions from all stationary sources 4.1 8.8 13.0 37.9
Measures reducing emissions from transport sector 1.9 1.9 1.9 n/a
Total core scenario 5.9 10.7 14.9 > 39.7

Alternative scenarios
Measures reducing emissions from all stationary sources 6.1 >37.9 >37.9 >37.9
Measures reducing emissions from transport sector 0 0 0 n/a
Total core scenario 6.1 >37.9 >37.9 > 39.7
Difference 0.2 >27.2 >27.2 n/a
Source: RAINS. Note: Sums do not add up due to rounding errors

When the same analysis was repeated for Scenarios B and C it emerged that without
road emission reduction measures it was not possible to reach the interim
environmental and health objectives by 2020. In other words, even if all measures in
the Maximum Technical Feasible Reduction Scenario were undertaken – costing
each year about €40 billion per year – the interim objectives would still not be
achieved. In sum, road emission reduction measures are indispensable to reach the
interim objectives of Scenarios B and C cost-effectively.

Apart from the work by RICARDO (2003), the Commission had independently

started preparations for new emission standards for light-duty vehicles and heavy-
duty vehicles by sending out questionnaires to the stakeholders. A questionnaire on
light-duty vehicles was sent in February 2004 and another one on heavy-duty

Drucksache 16/1814 – 146 – Deutscher Bundestag – 16. Wahlperiode

vehicles in May 2004. These questionnaires requested cost and technology data on a
number of emission reduction scenarios for light and heavy duty vehicles. All
responses were received by the beginning of June 2004 for light-duty vehicles and
somewhat later for heavy-duty vehicles. The light duty vehicle emission and cost
data has been validated by a panel of independent experts and will be used in the
impact assessment of the new Euro 5 standard for light duty vehicles. That work took
more time than expected because of the need to interpret the rather diverse responses
received, to fill data gaps and to further consult with the stakeholders. The final
element of industry input was only received in February 2005. Because of the work
on light-duty vehicle data, the validation of heavy duty vehicle emission reduction
and cost data could not yet be started and will be undertaken later in 2005.

Based on the review of the light duty vehicle emission data, it appears that the
reduction potential for NOX is overestimated in the RICARDO (2003) data given the
incremental cost. Thus, the cost estimates used in this impact assessment for light
duty vehicles are likely to be underestimated for light duty vehicles.

On the other hand, , it seems that RICARDO (2003) may have underestimated the
potential for NOX reduction from heavy duty vehicles. Overall, the reduction
potential for NOX from transport measures has thus uncertainties and the same is the
case for the estimated costs, which need to be considered approximative at this stage.
The impact assessment of further road measures will use the updated emission
reduction and cost data and will thus give a more accurate picture of the reduction
potential from light and heavy duty vehicles.

5.5.4. Maritime Transport

The baseline assumes implementation of the currently decided control measures to
reduce emissions from seagoing ships. These include for SO2 the EU sulphur
proposal as per Common Position, i.e., 1.5% sulphur marine fuel oil for all ships in
the North Sea and the Baltic Sea; 1.5% sulphur fuel for all passenger ships in the
other EU seas; low sulphur marine gas oil; and 0.1% sulphur fuel at berth in ports.
For NOX, implementation of the MARPOL NOX standards for all ships built since
2000 have been assumed.

A sensitivity case has been analysed to explore the cost-effectiveness of further
emission reduction measures for sea-going ships in the context of tightened ambition
levels for land based sources. Optimizations for the Scenarios A, B and C have been
repeated with the additional assumption that ships would reduce their NOX emissions
further through slide valve retrofits for slow speed engines. For 2020, costs of this
measures are estimated at €28 million peryear.

The analysis reveals this option as highly cost-effective for all the three analysed
cases. Maintaining the environmental interim targets of Scenarios A, B and C,
respectively, implementation of this NOX control measure would relax costly
emission control measures at land-based sources and thereby lead to substantial cost
savings (Table 16).

Deutscher Bundestag – 16. Wahlperiode – 147 – Drucksache 16/1814

Table 16: Costs for the sensitivity case with further measures for ships compared to the
central scenarios (€ million per year)

Sensitivity case with measures for ships CAFE scenario
without ship

measures : Costs
for land based

sources

Costs for
land-based

sources
Costs for
ships

Total costs
Cost difference
to the central
CAFE cases

Scenario A 5923 5783 28 5811 -112
Scenario B 10679 10492 28 10520 -159
Scenario C 14852 14499 28 14527 -325

Source: RAINS

5.5.5. Robustness of results on particulate matter

A sensitivity case has been constructed which takes Scenario B as the starting point
but ignores any reduction target for years of life lost from exposure to PM2.5.
However, the environmental interim objectives of Scenario B for ecosystems and
ozone would be kept. The aim of the scenario is to understand how robust
Scenario B would be if assumptions about the human health benefits derived from
reduced exposure to particulate matter were altered fundamentally. The extreme case
is to assume that there would be no human health benefits from reducing the
concentration of particulate matter. If this were the case, the interim objectives for
environmental issues would be maintained, while there would be no interim
objective for particulate matter. The summary results are presented in Table 17.

Table 17: Robustness of the Strategy: Consequences if morbidity and mortality due to
particulate matter exposure were excluded as an interim objective

Unit Scenario B

Scenario B
without target
for reducing
life years lost

(PM2.5)

Difference %

Life years lost
(cumulative) millions 104 114 9.6%

Emissions in 2020
SO2 kilotonnes 1567 2034 29.8%
NOx kilotonnes 4678 4301 -8.1%
VOC kilotonnes 4937 4917 -0.4%
NH3 kilotonnes 2598 2661 2.4%
PM2.5 kilotonnes 709 938 32.3%

Annual abatement cost € billion 10.7 9.0 -15.9%
Source: RAINS

This sensitivity case shows that even if targets for human health were not considered
at all, the chosen environmental interim objectives would still signify very similar
emission reductions in the EU. While without targets on human health the EU would

need to reduce its SO2 emissions by about a third less and primary PM2.5 emissions

Drucksache 16/1814 – 148 – Deutscher Bundestag – 16. Wahlperiode

not at all, emission reductions of NOx would actually need to be almost 10% higher
than otherwise. Compliance costs for the environmental targets alone would be 15%
lower than for the scenario that addresses health targets, too.

It is possible to interpret this result differently. Assuming that reaching the ecosystem
interim objectives would cost €9 billion per annum in 2020, the additional annual
cost of reaching the interim objective of human health in terms of PM would cost
only €1.7 billion extra. This interpretation needs to be kept in mind in the impact
assessment of the reduction of the average annual urban background concentration in
the EU between 2010 and 2020.

In sum, if the interim objective for human health due to particulate matter were not
considered, the attainment of the interim objectives for environmental reasons would
entail a very similar air pollution abatement strategy in the EU. Even the costs would
be only 15% lower if the mortality and morbidity aspects of particulate matter
exposure were not considered at all. The multi-pollutant/multi-effect approach with
simultaneous objectives on health and environment is an important means for
safeguarding robustness and thus lends support for the strategic choice made by the
Commission for the Strategy, namely in favour of Scenario B.

5.6. Comparing costs and health impacts

5.6.1. Health impact

Changes in health damage of the different policy options are assessed using the
methodology outlined in Section 2.3 and given in detail in the CBA methodology
reports. The major monetised benefits of policy options would come from reduced
premature deaths and reduced loss of life expectancy. Also benefits from reduced
morbidity contribute significantly to the overall benefits. Again, it must be kept in
mind that the basis of evidence for quantifying the most influential morbidity health
endpoints is more limited than for mortality (see Section 2.3).

Deutscher Bundestag – 16. Wahlperiode – 149 – Drucksache 16/1814

Table 18: Change in annual health impacts over baseline in 2020

End point
Pollut-

ant
Unit Scenario

A
Scenario

B
Scenario

C MTFR
Chronic mortality (years) PM thousand 492.5 600.8 654.6 744.6

Chronic mortality (premature deaths) PM thousand 53.8 65.7 71.6 81.4
Infant mortality (0-1 years) (premature deaths) PM 70 80 90 100
Chronic bronchitis (over 27 years) PM thousand 25.5 31.1 33.9 38.5
Respiratory hospital admissions (all ages) PM thousand 8.5 10.3 11.2 12.8
Cardiac hospital admissions (all ages) PM thousand 5.2 6.4 6.9 7.9
Restricted activity days (15-64 years) PM million 44.4 54.1 58.9 67.0
Respiratory medication use (children 5-14 years) PM million 0.4 0.5 0.5 0.6
Respiratory medication use (adults over 20 years) PM million 4.2 5.1 5.5 6.3
Lower respiratory symptom (LRS 5-14 years) PM million 17.7 21.7 23.6 27.0
LRS among adults (over 15years) with chronic symptoms PM million 41.4 50.5 55.0 62.6
Acute mortality (premature deaths) O3 thousand 1.6 2.2 2.5 3.0
Respiratory hospital admissions (over 65years) O3 thousand 1.6 2.1 2.5 2.9
Minor restricted activity days (MRADs 15-64 years) O3 million 3.2 4.3 4.9 5.9
Respiratory medication use (5-14 years) O3 million 1.0 1.3 1.5 1.8
Respiratory medication use (over 20 years) O3 million 0.6 0.8 1.0 1.1
Cough and lower respiratory symptom (LRS 0-14 years) O3 million 4.9 6.6 7.5 9.1

Source: CAFE Cost-Benefit Analysis

Table 19: Change in annual health impacts over baseline in 2020 (millions of euros)

Endpoint
Pollut-

ant
Scenario

A
Scenario

B
Scenario

C MTFR
Chronic mortality – VOLY – (median value) PM 25,750 31,412 34,225 38,927
Chronic mortality – VSL – (median value) PM 52,726 64,313 70,122 79,680

Chronic mortality – VOLY – high (mean value) PM 57,798 70,508 76,822 87,377
Chronic mortality – VSL – high (mean value) PM 108,479 132,319 144,271 163,935
Infant mortality (0-1 years) – (median value) PM 100 121 132 150
Infant mortality (0-1 years) – (mean value) PM 199 242 264 300
Chronic bronchitis (over 27 years) PM 4,786 5,827 6,348 7,219
Respiratory and cardiac hospital admissions PM 27 34 37 42
Restricted activity days (RADs 15-64 years) PM 3,703 4,512 4,915 5,589
Respiratory medication use PM 4 5 6 7
Lower respiratory symptoms PM 2,272 2,774 3,022 3,440

Acute mortality (VOLY median) O3 83 110 127 152
Acute mortality (VOLY mean) O3 186 248 285 342
Respiratory hospital admissions and medication use O3 5 6 7 9
Minor restricted activity days (MRADs 15-64 years) O3 124 165 190 228
Cough and lower respiratory symptoms (0-14 years) O3 189 252 290 349
Total with mortality – VOLY – (median value) 37,043 45,218 49,299 56,112
Total with mortality – VSL – (median value) 64,019 78,119 85,196 96,865

Total with mortality – VOLY –(mean value) 69,293 84,573 92,186 104,902
Total with mortality – VSL – (mean value) 119,974 146,384 159,635 181,460
Source: CAFE Cost-Benefit Analysis

Drucksache 16/1814 – 150 – Deutscher Bundestag – 16. Wahlperiode

The costs and health benefits can be compared in different way based on the
information in Tables 18 and 19. The cost per life year saved is estimated to increase
from about €12,000 under Scenario A to over €53,000 under MTFR. The NewExt
(Table 3) estimated that the value of each life year lost would be either €52,000 or
€120,000 depending on whether the median or mean value is used. The cost per life
saved is also estimated to increase from about €110,000 per life saved (i.e. premature
fatality avoided) to about €490,000. The value of statistical life was estimated in
NewExt to be between €1 and €2 million depending on whether the median or mean
value is used. Thus, the cost-effectiveness of the MTFR based on human health
seems justifiable, but barely so.

5.6.2. Marginal analysis: Optimal ambition level for PM2.5 health

A way of defining the optimal ambition level would be to compare the cost per life
year saved against the marginal benefit of a life year saved. This balance should be
limited to the costs for reducing PM2.5 concentration only (therefore excluding
additional costs linked with acidification, eutrophication and ground-level ozone
targets), with the monetary valuation of both mortality and morbidity effects due to
reduced PM2.5 concentration. The optimum is the point where marginal costs and
marginal benefits are equalized. The reason is that at this point the total benefits
minus the total costs (i.e. the net benefits) are maximised.

Converting this theoretical construct to marginal cost and marginal benefit curves is
somewhat problematic in the case of costs, as a precise estimation of the marginal
costs is made difficult by the small number of points available for defining the total
cost curve (as marginal cost are available in RAINS at pollutant level). Marginal
costs have therefore been estimated around scenarios A, B and C as well as some
additional points. Marginal benefits in terms of reduced mortality and morbidity due
to particulate matter have also been calculated using the lower and upper bound in
the valuation range for the life of year lost as provided by the Cost Benefit Analysis.
As can be seen in Figure 17, the point where marginal costs and benefits (lower
bound) are equalized is between scenarios B and C.

It should also be noted that the largest improvements are estimated to materialise
from moving from the baseline to Scenario A. The marginal costs of moving from
Scenario A to B and further to C are estimated to increase rather sharply while
marginal benefits remain flat.

Further, it needs to be emphasized, that in the analysis thus far, the environmental
benefits of reduced air pollution have not been included. A proper analysis of the
environmental impacts needs therefore to be undertaken for defining the proper level
of ambition for all the targets.

Deutscher Bundestag – 16. Wahlperiode – 151 – Drucksache 16/1814

Figure 17: Marginal Cost and Benefits – PM2.5 Health ambition level

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

0 100 200 300 400 500 600 700
years life saved ('000) related to reduction in PM2.5 concentrations

M
ar

gi
na

l c
os

ts
a

nd
b

en
ef

its
in

e
ur

os

Marginal benefits of mortality (VOLY
median) and morbidity

improvements

A B C

Marginal cost

Levels of Ambition
Marginal benefits of mortality
(VOLY mean) and morbidity

improvements

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

0 100 200 300 400 500 600 700
years life saved ('000) related to reduction in PM2.5 concentrations

M
ar

gi
na

l c
os

ts
a

nd
b

en
ef

its
in

e
ur

os

Marginal benefits of mortality (VOLY
median) and morbidity

improvements

A B C

Marginal cost

Levels of Ambition
Marginal benefits of mortality
(VOLY mean) and morbidity

improvements

In order to see how uncertainty in the effects would affect the analysis, Figure 18
illustrates the impact of a 10% increase or decrease of the effect of PM2.5 on life
years. While in Figure 17 the optimal point of marginal benefits and costs -- when
the median a value of life year lost is used -- would be between points B and C, it
would be between A and B if the effect were lower than the central estimates of
RAINS.

Figure 18: Effect of uncertainty on the ambition level related to health effects of PM2.5

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

0 100 200 300 400 500 600 700
years life saved ('000) related to reduction in PM2.5 concentrations

M
ar

gi
na

l c
os

ts
a

nd
b

en
ef

its
in

e
ur

os

Marginal benefits of mortality (VOLY
median) and morbidity

improvements

A B C

Marginal cost

un
ce

rta
in

ty

Levels of Ambition
Marginal benefits of mortality
(VOLY mean) and morbidity

improvements

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

0 100 200 300 400 500 600 700
years life saved ('000) related to reduction in PM2.5 concentrations

M
ar

gi
na

l c
os

ts
a

nd
b

en
ef

its
in

e
ur

os

Marginal benefits of mortality (VOLY
median) and morbidity

improvements

A B C

Marginal cost

un
ce

rta
in

ty

Levels of Ambition
Marginal benefits of mortality
(VOLY mean) and morbidity

improvements

Drucksache 16/1814 – 152 – Deutscher Bundestag – 16. Wahlperiode

5.7. Impact on ecosystems

This section gives the impacts of reduced air pollution on ecosystems. In order to
compare the situation in 2000 accurately with the projected ambition levels, it was
necessary to re-run the EMEP model with exactly the same meteorological year as in
the optimisation, i.e. 1997. Thus the differences presented in the three ambition
levels and the base year are comparable. There were three kinds of impacts on
ecosystems reported: impacts on Acid deposition to semi-natural ecosystems and
freshwater bodies, and excess nitrogen deposition.

5.7.1. Acid deposition to forest ecosystems

Acidification of forest ecosystems has been reassessed using a more precise
ecosystem-specific deposition to forests and nine times higher resolution in the
grids84 as compared with the previous assessment made for the development of the
NEC Directive. This improved scientific knowledge and model precision has
increased our understanding of the impacts of acidification on forests. Most
importantly the ecosystem deposition accounted for in the new methodology has
increased the estimated deposition to forests, since “dry deposition” is substantially
higher to forests than to grass land or the average deposition in a 50 km x 50 km grid
of the EMEP model.

Improvements are expected following the present environment policies, but major
acidification problems would remain in areas with sensitive ecosystems and high
emissions (Figure 19). It is estimated that the percentage of the area of forest eco-
systems receiving acid deposition above the critical loads would be reduced by over
50% i.e. by 124,000 km2 by 2020 to 119,000 km2. Scenario B would reduce the area
receiving acid deposition above the critical load further by about 60,000 km2. In
Scenario A the reduction would be 8,000 km2 less than in Scenario B, and in
Scenario C the reduction would be 4,000 km2 more.

84 The earlier maps were based on 150 km x 150 km grid squares while the maps in the present assessment

are based on a 50x50 km resolution. You can fit nine 50x50 km grids into one 150x150 km grid.

Deutscher Bundestag – 16. Wahlperiode – 153 – Drucksache 16/1814

Figure 19: Percentage of forest area receiving acid deposition above the critical loads for
the three ambition levels in 2020 – compared with 2000 and the baseline in 2020
2000 Scenario B in 2020
Baseline 2020 Scenario A in 2020 Scenario C in 2020

Note: Calculation results are based on the meteorological conditions of 1997, using ecosystem-specific
deposition to forests.

Drucksache 16/1814 – 154 – Deutscher Bundestag – 16. Wahlperiode

5.7.2. Acid deposition to semi-natural ecosystems

The area of semi-natural ecosystems receiving acid deposition above the critical load
is estimated only some Member States (Figure 20) due to a lack of information on
critical loads for many countries. In the Member States where information is
available the area of semi-natural ecosystems receiving acid deposition above the
critical load is estimated to decrease by 80% in 2020 under the present policies.
Under Scenario B the area would be further reduced by about 3,000 km2 in these
Member States. In Scenario A, the semi-natural ecosystems receiving deposition
above critical load is estimated to be about 1,000 km2 higher.

Figure 20: Percentage of the area of semi-natural ecosystems receiving acid deposition
above the critical loads for the three ambition levels in 2020 – compared with 2000 and
the baseline in 2020

2000 Scenario B in 2020
Baseline 2020 Scenario A in 2020 Scenario C in 2020

Source: RAINS. Note: Calculation results are based on the meteorological conditions of 1997, using ecosystem-
specific deposition.

Deutscher Bundestag – 16. Wahlperiode – 155 – Drucksache 16/1814

5.7.3. Acid deposition to freshwater bodies

The area of freshwater ecosystems in these EU Member States receiving a deposition
of acid above the critical load is estimated to decrease by about 40% or 13,000 km2
to about 19,000 km2 under Scenario B between the years 2000 and 2020 (Figure 21).
Under Scenario A the reduction would be about 1,000 km2 less and under Scenario C
about 1,000 km2 more.

Figure 21: Percentage of freshwater ecosystems area receiving acid deposition above the
critical loads for the three ambition levels in 2020 – compared with 2000 and the
baseline in 2020
2000 Scenario B in 2020
Baseline 2020 Scenario A in 2020 Scenario C in 2020

Source: RAINS. Note: Calculation results are based on meteorological conditions of 1997, using ecosystem-
specific deposition.

Drucksache 16/1814 – 156 – Deutscher Bundestag – 16. Wahlperiode

5.7.4. Excess nitrogen deposition

Emissions of nitrogen-containing pollutants, such as ammonia and nitrogen oxides,
are eventually deposited on the ground in various forms of nutrient nitrogen and
hence contribute to eutrophication of ecosystems, such as forests and fresh waters. In
the present assessment deposition of nutrient nitrogen to the sea has not been
assessed.

The present nitrogen deposition widely exceed the critical loads over large areas of
the EU corresponding to about 733,000 km2 in 2000 and down to about 590,000 in
2020 under present policies. Scenario B would reduce the area with excess
deposition of nitrogen above the critical load by a further 215,000 km2, but
substantial and severe eutrophication problems would remain in many Member
States (22). Under the low ambition scenario, an area about 50,000 km2 less would
be protected and under Scenario C an additional area about 28,000 km2 would be
protected as compared to Scenario B.

Figure 22: Percentage of total ecosystems area receiving nitrogen deposition above the
critical loads for eutrophication for the emissions for the three ambition levels in 2020 –
compared with 2000 and the baseline in 2020
2000 Scenario B in 2020
Baseline 2020 Scenario A in 2020 Scenario C in 2020

Source: RAINS. Note: Calculation results are based on meteorological conditions of 1997, using grid-average
deposition.

Information from the literature provides insight into the types of effect that could
occur, but there is still no sound basis at present for further quantification impacts
and valuation of impacts on different types of ecosystems. Therefore this Impact

Assessment does not go further in quantifying ecological impacts outside of

Deutscher Bundestag – 16. Wahlperiode – 157 – Drucksache 16/1814

agriculture, other than simply using the results from RAINS in terms of critical load.
However, as the omission of monetised ecosystem benefits may trigger a significant
bias towards underestimation of total benefits, further research will be undertaken.

5.7.5. Other non-health effects

Ozone is recognised as the most serious regional air pollutant problem for the
agricultural sector in Europe at the present time. Ozone affects vegetation by
impeding growth, and hence reducing crop yield. Dose response functions are
available for only a few crops and species of natural vegetation, since only a few
have been studied.85 The impact of ozone is concentrated in the growing season,
mainly May to August.

There are large differences in damage to crops throughout the EU, depending on
agricultural activity, soil moisture and ozone concentration (Figure 23). The loss of
wheat yield in the EU due to ozone is estimated at 8028 kilotonnes in 2000.
Scenario B would reduce that ozone damage to about 2960 kilotonnes in 2020. The
monetary valuation (Table 20) indicates that the overall damage to crops (mainly
wheat yield loss) corresponds to some 2800 million euros in 2000 and about 1500
million euros in 2020 under present policies. Scenario B would reduce the damage to
crops by a further 415 million euros in 2020.

Table 20: Annual crop damage in EU-25 per in 2020 (millions of euros)

2000 Baseline 2020 Scenario A Scenario B Scenario C MTFR

2799 1511 1179 1096 1052 621

Source: CAFE Cost-Benefit Analysis

85 Impact on vegetation is closely related to the availability of soil water since the stomata, the small

orifices on the leaves through which plants take up atmospheric gases like carbon dioxide and other
gases, close in dry conditions.

Drucksache 16/1814 – 158 – Deutscher Bundestag – 16. Wahlperiode

Figure 23: Reduction of impacts of ozone on wheat yields in EU-25 for emissions for the
three ambition levels in 2020 – compared with 2000 and the baseline in 2020 (tonnes)

2000 Scenario B in 2020

Baseline 2020 Scenario A in 2020 Scenario C in 2020

Source: CAFE Cost-Benefit Analysis. Note: Calculation results are based on the meteorological conditions of
1997.

Deutscher Bundestag – 16. Wahlperiode – 159 – Drucksache 16/1814

5.8. Summary of costs and benefits

Table 21 summarises the results of the three ambition levels. The largest
improvements are estimated to materialise from moving from the baseline to
Scenario A. It seems evident that going beyond Scenario C is difficult to justify even
if the overall health and environmental benefits are likely to be higher than the
corresponding costs. The reason is that regarding the health impact from PM2.5, the
marginal benefits beyond Scenario C become lower than the marginal costs, and
Scenario C already provides a substantial level of improvement for natural
environment compared to the baseline by 2020..

Table 21: Alternative environmental ambition levels up to 2020
Human health Natural environment

Ecosystem area exceeded
acidification
(000 km2) Ambition

level

Cost of
reduction

(€bn)

Life
Years
Lost

(million)
due to
PM2.5

Premature
deaths

(thousands)
due to

PM2.5 and
ozone

Range in
monetised

health
benefits86

(€bn) Forests
Semi-
natural

Fresh-
water

Ecosystem
area

exceeded
eutrophicat-

ion
(000 km2)

Forest
area

exceeded
ozone

(000 km2)

2000 3.62 370 - 243 24 31 733 827
Baseline
2020

2.47 293 - 119 8 22 590 764

Scenario A 5.9 1.97 237 37 – 120 67 4 19 426 699

Scenario B 10.7 1.87 225 45 – 146 59 3 18 375 671

Scenario C 14.9 1.81 219 49 – 160 55 3 17 347 652

MTFR 39.7 1.72 208 56 – 181 36 1 11 193 381

Note: In addition, the range of benefits for reduced damage to agricultural crops is between €0.3 and €0.5
billions for scenarios A, B and C. In addition, the damage to materials and buildings will be smaller. Ecosystem
benefits have not been monetised but still need to be considered.

Moreover, before selecting which of the scenarios would be the most appropriate one
for an interim objective, the assessment of wider economic and social impacts is
required.
86 Lower value is based on the median of the value of a life year lost (VOLY) and higher value is based

on mean value of a statistical life (VSL).

Drucksache 16/1814 – 160 – Deutscher Bundestag – 16. Wahlperiode

5.9. Wider economic and social impacts

5.9.1. Competitiveness

The Commission estimated the impacts of the interim objectives on competitiveness,
using the GEM-E3 general equilibrium model,87 described in more detail in Annex 2.

The model has already been used on a number of occasions for European policy
support,88 and allows analysis of impact on GDP, domestic production, employment
and prices in Member States, and impact at sectoral level. It is not intended to
convert results on either into a metric that could be combined directly with quantified
impacts on health, agriculture, etc, to give a total benefit for comparison with the
RAINS-generated cost information. Instead, the GEM-E3 provides an indication of
the likely direction and magnitude of effects of air quality improvement policies in
these areas (e.g. “Are these policies likely to have a significant effect on employment
across Europe or in specific sectors or country?”). If macro-economic effects appear
to be significant, it could be appropriate to adjust policies or to investigate further
before finalising recommendations.

The costs of meeting Scenarios A, B and C were estimated at 0.04%, 0.08% and
0.12% of EU-25 GDP in 2020 respectively (See Table 22). Perhaps surprisingly, the
Strategy has very little impact on overall employment. There are some sectoral shifts
and some differences between Member States. However, they cancel each other out.
There would be a small positive impact to exports. However, imports are estimated
to grow more, mainly due to the terms of trade effect.

The general equilibrium analysis takes into account the possible economic effects of
industrial relocation from the EU to other countries, be they industrial (e.g. the US
and Japan) or developing (e.g. China and India), assuming that they do not introduce
additional protection for the environment or human health from air pollution. In other
words, the reductions in GDP and employment in the EU are partly driven by the
assumption that environmental standards in non-EU countries are lower.

Another important caveat is that the measures from RAINS optimizations are
implemented into GEM-E3 as end-of-pipe measures, without any kind of market-
based instruments. This may lead to a considerable over-estimation of the impact. An
alternative scenario including flexible mechanisms would be helpful, but it was not
technically possible to run this scenario for this impact assessment.

Due to lack of detailed data, the modelling runs of GEM-E3 do not take into account
efforts to improve the environment in non-EU industrialised and developing
countries and the increased compliance costs and the demand for technologies to
reduce air pollution. If developments in other countries could be modelled, the
87 The model was developed with the support of the 5th Research Framework Programme and is currently

being used to develop the modelling capability of the Commission in the IQ-TOOLS project under the
6th Framework Programme. The model and its database were updated in 2004 and extended to 8 New
Member States (Hungary, Poland, Slovenia, Estonia, Latvia, Lithuania, Czech Republic and Slovakia).
88 See Kouvaritakis, Paroussos, Van Regemorter: The macroeconomic evaluation of energy tax policies
within the EU, with the GEM-E3-Europe model – Study for the European Commission DG TAXUD;
http://europa.eu.int/comm/taxation_customs/resources/documents/economictaxation_final_report.pdf

Deutscher Bundestag – 16. Wahlperiode – 161 – Drucksache 16/1814

impact of the Strategy on competitiveness in the EU would be mitigated, even
reversed.

Table 22: Macroeconomic impacts of three scenarios compared to baseline in 2020
Scenario A Scenario B Scenario C

Gross Domestic Product -0.04% -0.08% -0.12%
(€ Billion) -5.616,5 -11.565,7 -17.115,8

Private consumption -0.06% -0.13% -0.20%
(€ Billion) -4.668,7 -9.679,9 -14.387,4

Investment -0.01% -0.02% -0.03%
(€ Billion) -292,2 -607,3 -881,7

Final energy consumption -0.12% -0.24% -0.34%
Exports to rest of the world 0.00% 0.01% 0.02%
Imports from rest of the world 0.04% 0.10% 0.15%
Employment 0.00% 0.00% 0.00%

(thousand jobs) -6.5 4.0 10.4
Real wage rate -0.04% -0.09% -0.14%
Relative consumer price 0.00% 0.00% 0.00%
Real interest rate 0.01% 0.02% 0.03%
Terms of trade 0.04% 0.08% 0.12%

Source: GEM-E3

The analysis should be completed taking into consideration the fact that other
countries are also taking important steps to reduce their air pollution, for instance on
March 10, 2005, the US EPA issued the Clean Air Interstate Rule (CAIR) in 28
Eastern States covering a population of over 200 million. With an estimated annual
compliance cost of $4.6 billion in the power plant sector, CAIR will reduce SO2
emissions in all States by over 70% and NOx emissions in the 28 Eastern States by
over 60% from 2003 levels to 2020. In addition, the US has emission limit values for
passenger cars that are much more stringent that current Euro 4 standards in the EU
and the situation is the same for heavy duty vehicles.89 These recent air pollution
laws in the US cost policies cost about $12 billion per annum in 2020.

In addition, the NOx State Implementation Plan (SIP) addressed reduces
significantly ozone non-attainment problems in North-Eastern US costing about $2
billion. However, some of these costs have been subsumed by CAIR and are thus not
completely additional to the other policies. In sum, the recent air pollution laws --
which are comparable to the interim objectives in the Strategy -- are estimated to cost
for transport and power generation sectors alone in the US between $12 and $14
billion per annum (Figure 24).

89 The recent vehicle emission standards are "Tier II Vehicle (Final Rule 12/1999)" and "Heavy-Duty

Diesel Rule (Final Rule 12/2000)". Source: www.epa.gov

Drucksache 16/1814 – 162 – Deutscher Bundestag – 16. Wahlperiode

Figure 24: Annual cost of transport and other past rules that US EPA has promulgated
– comparison with Scenario B

Clean Air Interstate
Rule

Passenger cars (Tier
II)

Heavy-Duty Diesel
Rule

NOx State
Implementation Plan

Call

0

2

4

6

8

10

12

14

16

CAFE Scenario B US legislation

€b
n,

$
bn

Source: US EPA and this impact assessment

Many developing countries are taking action against air pollution. For instance,
China has started to take serious action against air pollution by requiring coal- fired
power plants to reduce SO2 and NOx emissions and has adopted “Euro 3” emission
limit values for light vehicles from 2007 onwards (see Box).

The positive impacts of reduced mortality and increased health status were not
estimated in GEM-E3. For instance, improved air quality reduces the number of
illnesses and thus not only increases the quality of life but also increases
productivity. Reduction in sick days will directly contribute by increasing GDP.
However, due to modelling uncertainties this feedback to the economy was not
modelled, and thus the general equilibrium results overestimate the compliance costs
in this respect.

Overall, the attainment of the interim objectives in the Strategy is not expected to
impact European competitiveness relative to other developed countries such as the
USA and Japan. This is because these countries have similar or more stringent air
pollution policies in place. For instance, current vehicle emission standards in the
USA and Japan are more stringent and their air quality limit values are similar.

Improving competitiveness and mitigating damage to human health and the
environment can be complementary. The EU can gain advantages and create
opportunities by focusing research and development on resource-efficient and less

polluting technologies that other countries will eventually need to adopt. For
instance, as some Member States in the 1980s introduced new technologies to reduce

Deutscher Bundestag – 16. Wahlperiode – 163 – Drucksache 16/1814

NOX and SO2 emissions, they are now selling this technology to other parts of the
world, including developing countries

Reducing SO2 and NOX emissions in China

In China, coal-fired power plants are subject to several regulations. China has had demanding air
pollution emission standards since 2003. Almost all newly built and expanded coal-fired units must
install flue gas desulphurization (FGD) units to meet these new standards. For old coal fired power
plants, sulphur content of coal needs to be below 0.5% to meet the emission standard by 2010. China
has also set a levy on SO2 emissions which is currently 630 RMB (i.e. about €60) per tonne of SO2,
roughly equivalent to annualized cost of FGD installation in China90. China intends to set a similar
levy also on NOX emissions. Furthermore, all pure condensing type generators below 50 MW are
phased out due to legislation.

Chinese government offers an incentive to electricity producers to install FGDs. The incentive varies
regionally but the intent is to cover the operation costs of FGD. Chinese government is also
monitoring the emissions through continuous emission monitoring systems to ensure full compliance
to the emissions standards. Finally, China is looking carefully at the feasibility of starting a cap and
trade programme to reduce air pollution.

Concerning mobile sources, new emission standards for heavy duty trucks entered into force in China
from 1 July 2005. For light duty vehicles, the current emission limits in China are Euro 2, and all new
light duty vehicles to need to meet Euro 3 standards from on 1 July 2005 in Beijing, and from 1
January 2007 in other parts of China. The feasibility of setting Euro 4 standards (which entered into
force in the EU in 2005) for 2010 are currently being assessed.

In sum, the Chinese policies to reduce SO2 and NOx emissions are similar to those of the EU and
trailing by about 5 to 10 years.

Source: Air Pollution Control Division, State Environmental Protection Administration of China.
For details, see: http://www.zhb.gov.cn/english/

The sectoral impacts are rather small (Table 23). The price increase remains small,
which can be partly explained by the cost effectiveness of the measures. The
equipment goods sectors benefit from increased demand for abatement equipment,
while the consumer goods industry is projected to suffer from the decrease in
consumption.

The reduction of SO2 and NOX emissions from power generation sector will increase
the power generation costs by (about 2) billion euros per annum in 2020. As
production costs of power generation will be increased these costs will eventually be
reflected in the wholesale price of power. In 2020, the predicted electricity
consumption in the CAFE baseline was 3856 TWh. Thus, the estimated increase in
electricity price is about 0.05 eurocents per kWh being about 1 % of the wholesale
price of electricity. The exact increase will depend on the fuel mix in each Member
State.

90 For comparison, in Galicia (Spain), there is a levy of up to €42 per tonne of SO2 while in Denmark the

levy for power plants is €2670 per tonne of SO2. In the US the price of SO2 in their emission trading
market has been between €50 and €200 per tonne of SO2.

Drucksache 16/1814 – 164 – Deutscher Bundestag – 16. Wahlperiode

The thematic strategy will also benefit the agricultural sector. This is because the
reduced ozone concentrations will increase agricultural productivity. It has been
estimated that the monetary value alone of increase crop (wheat) production due to
lower ozone concentrations will be about 0.5 billion euros (check) per annum.

Table 23: Sectoral impact on production at air pollution scenarios (% difference
compared to the baseline in 2020)

Scenario A Scenario B Scenario C

Agriculture -0.19% -0.46% -0.72%
Energy production -0.09% -0.16% -0.23%
Ferrous and non-ferrous metals -0.01% 0.03% 0.07%
Chemical products -0.01% -0.01% 0.01%
Other energy-intensive sectors -0.05% -0.03% -0.01%
Electrical goods 0.12% 0.26% 0.40%
Transport equipment -0.01% -0.02% -0.04%
Other equipment goods 0.24% 0.53% 0.81%
Consumer goods industries -0.05% -0.13% -0.21%
Construction -0.01% -0.02% -0.03%
Telecommunication services 0.02% 0.05% 0.08%
Transport 0.00% 0.02% 0.05%
Services of credit and insurances 0.01% 0.03% 0.04%
Other market services -0.01% -0.02% -0.04%
Non market services -0.01% -0.02% -0.03%

Source: GEM-E3

5.9.2. Social Impacts

The net effect on employment at EU-25 level was estimated to be neither positive
nor negative. This is because of the fact that sectoral variations cancel each other out
(Table 24). The demand decrease (except for the sectors delivering abatement
equipment) has a negative effect on employment, but on the other hand the real wage
decrease (to get an equilibrium on the labour market) and the energy price increase
favour the demand for labour. These effects balance each other out.

GEM-E3 model projects that there would be no impact on households through
variations in consumer prices (Table 22).

Regarding impact on social inclusion, CAFE cost-benefit analysis has been
reviewing evidence on the following issues: (a) variation of exposure to air pollution
amongst communities who rate poorly on social deprivation indices; (b) variation in
susceptibility of different groups to health impacts (e.g. due to poorer nutrition or
less access to health care). Quantitative assessment of links between air pollution
impacts and social deprivation is not possible at this stage because of a lack of data,
although there is evidence that air quality tends to be worse in poorer communities.
Therefore the benefits of reduced air pollution are likely to favour proportionally
more lower income groups and thus have a positive impact on social inclusion.

Deutscher Bundestag – 16. Wahlperiode – 165 – Drucksache 16/1814

Table 24: Sectoral impact on employment at EU level in 2020

Source: GEM-E3

Finally, job quality would improve together with needs for retraining in firms. For
example, better technology is required to achieve reductions in vehicle or plant
emissions and so this could correlate with a shift towards relatively hi-tech
production.

5.9.3. Impact on innovation and research

Recent evidence indicates that in general high environmental standards coupled with
a transparent and non-discriminatory regulatory framework constitute an engine for
business opportunities and innovation.91 Implementation of the Strategy is expected
to lead to increased use of pollution control technologies to reduce air pollution.
Historical evidence indicates that as a result of this capacity expansion, learning-by-
doing will be enhanced.92 Consequently, the costs of air pollution control
technologies may be reduced by around 10 % every time capacity doubles. Global
expansion of capacity in flue gas desulphurization and de-NOx installations in the
past entailed a reduction in investment costs by around 40% over the last 20 years.93
The number of patents in response to air quality legislation increased in Germany,
Japan and the US.
91 See SEC (2005) Main report: overall summary. Impact assessment and ex-ante evaluation for the

proposal for the Council and European Parliament decisions on the 7th Framework Programme (EC and
Euratom), Draft Commission Staff Working Paper, page 7.

92

Variation vs. Baseline 2020 Scenario A Scenario B Scenario C
EU-25 thousand % thousand % thousand %
Agriculture -25.1 -0.17% -45.8 -0.31% -73.8 -0.50%
Coal -3.6 -1.51% -4.8 -2.01% -6.3 -2.64%
Oil -0.4 -0.11% -0.8 -0.23% -0.9 -0.26%
Gas -0.4 -0.12% -1.1 -0.34% -1.6 -0.49%
Electricity 4.2 0.22% 5.8 0.30% 9.2 0.48%
Ferrous and non-ferrous metals 0.4 0.01% 2.1 0.05% 4.7 0.11%
Chemical products 0.7 0.02% 1.1 0.03% 2.1 0.06%
Other energy intensive -1.6 -0.02% 1.6 0.02% 4.7 0.06%
Electric goods 6.6 0.15% 12.7 0.29% 19.7 0.45%
Transport equipment 0.0 0.00% 0.0 0.00% -0.5 -0.01%
Other equipment goods 30.6 0.35% 56.9 0.65% 86.6 0.99%
Consumer goods industries -4.2 -0.03% -8.4 -0.06% -12.6 -0.09%
Construction 0.0 0.00% 0.0 0.00% 0.0 0.00%
Telecommunication services 0.7 0.02% 1.6 0.05% 2.6 0.08%
Transport 2.1 0.02% 5.2 0.05% 8.3 0.08%
Services of credit and insurances 2.6 0.04% 4.6 0.07% 6.6 0.10%
Other market services -14.9 -0.02% -22.4 -0.03% -29.8 -0.04%
Non market services -4.3 -0.01% -4.3 -0.01% -8.5 -0.02%
Total -6.5 0.00% 4.0 0.00% 10.4 0.00%
No assumption on this basis is already included in the cost estimates.
93 See Rubin, E. (2004) Clean coal: oxymoron or bridge to a sustainable (low carbon) future? Paper

presented at the workshop on Technology Policy for Climate Change Mitigation, 16 December Paris.
Carnegie Mellon University, Pittsburgh, Pennsylvania.

Drucksache 16/1814 – 166 – Deutscher Bundestag – 16. Wahlperiode

The European Council of March 200394 reiterated the important contribution of
environment policy to growth and employment, and also to the quality of life, in
particular through the development of eco-innovation and eco-technology as well as
the sustainable management of natural resources, which lead to the creation of new
outlets and new jobs. In addition to its growth in the internal market, this sector has
considerable export potential.

5.10. Other environmental impacts

Measures to further improve air quality will also help to achieve environmental
improvements in other policy areas.

5.10.1. Climate

The CAFE programme has shown that there are additional benefits to be obtained by
ensuring coherence between climate change and air pollution policies, particularly in
respect of simultaneously reducing climate and air emissions in the most cost-
effective way95. There are other specific linkages and overlaps.

– Tropospheric ozone is a regional and hemispheric air pollutant but also a direct
greenhouse gas. It has increased in concentration to the point where ozone is
now estimated to have provided the third largest increase in direct radiative
forcing since the pre-industrial era.

– Control of methane and NOx emissions on a hemispheric scale would reduce
the formation of ozone considerably.

– Primary particulate matter in the form of “black/elementary carbon” has a
deleterious effect on human health and contributes to atmospheric warming.

Thus reduced ozone concentrations and reduced emissions of particulate matter from
road vehicles are ‘no regrets’ policies from the perspective of both climate change
and air pollution policy.

There may, however, be instances where policies will conflict. For example,
secondary aerosols formed in the atmosphere from emissions of sulphur dioxide and
nitrogen oxides have a negative impact on human health, but significantly cool the
atmosphere.

5.10.2. Links to soil and water quality

Atmospheric deposition of acidifying substances and nitrogen compounds contribute
directly to potential critical load exceedences for terrestrial ecosystems and
freshwater ecosystems. Soil processes and chemistry dictate the quantity and rate at
which chemical substances leach from soil into groundwater and freshwater
ecosystems. The critical load formulations for terrestrial and freshwater ecosystems
are based upon soil properties and chemistry, and so there is a direct link between

94 Paragraph 19 of Presidency Conclusions – Brussels, 22 and 23 March 2005
95 GEM-E3 scenarios show that CO2 emissions in the EU-25 will be smaller in scenarios B and C than in

the baseline.

Deutscher Bundestag – 16. Wahlperiode – 167 – Drucksache 16/1814

atmospheric deposition, critical loads, soil quality and water quality. Ultimately,
detailed soil and water quality monitoring can assist in assessing the effectiveness of
air pollution policies.

Contributions to marine pollution come from direct anthropogenic riverine inputs but
also from atmospheric deposition. It is possible to quantify the atmospheric inputs of
pollutants such as nitrogen into European seas using the atmospheric modelling and
integrated assessment modelling tools, which are used routinely in developing the
thematic strategy on air pollution.

5.10.3. Sustainable use of resources and waste recycling

The measures undertaken in the framework of the Strategy will contribute to a
reduced requirement to utilise natural resources (e.g. fossil fuels).

Increase recycling (thereby reducing other processes such as incineration) can reduce
combustion-related air emissions.

5.10.4. Other

The recently adopted fourth daughter directive on ambient air quality addresses the
atmospheric deposition of mercury. The directive will introduce methods to monitor
such deposition as a means to understand better the behaviour of mercury in the
environment. No amendments are proposed to this legislation. The proposed
reductions in combustion-related emissions from fossil fuel burning will lead
indirectly to lower emissions of mercury into the atmosphere.

These interim objectives will be used as the basis for the revision of the NEC
Directive in 2006 as well as other legislation covering air pollution. To the extent
sources not covered by the NEC directive are included, the percentages would be
adjusted as appropriate.

Drucksache 16/1814 – 168 – Deutscher Bundestag – 16. Wahlperiode

6. MEASURES AND INSTRUMENTS

In order to meet the interim objectives of the Strategy, specific measures will need to
be undertaken at Community and Member State level. The RAINS model is capable
of providing a broad indication of the sectors and types of measures that could be
addressed to attain particular emissions reductions for individual pollutants. These
are discussed below, along with the measures that the Commission is currently
considering proposing. It should be noted that the abatement measures included in
the databases of the RAINS model are constantly updated with latest information.
Thus, the measures below provide a snapshot of those measures that were
particluarly cost-effective in the estimations made for the Thematic Strategy on Air
Pollution.

6.1. Emission reduction measures for meeting the ambition level of the Strategy –
indicative outcome of RAINS optimisation process

Tables 25a to 25e below show which sectors require additional measures (beyond
those in the “current legislation” baseline) in order to achieve the cost-optimal
emissions reductions associated with Scenario B. Broad categories of measures in
individual sectors are also indicated, along with their contribution to the level of
emissions reduction associated with each of the three scenarios.

6.1.1. SO2 emissions

For emissions of SO2, the use of low-sulphur heavy fuel oil (below 1%) is selected
for most Member States, even for the lowest ambition level, while the use of flue gas
desulphurisation depends more on country-specific conditions and the ambition
level.

Deutscher Bundestag – 16. Wahlperiode – 169 – Drucksache 16/1814

Table 25a: RAINS - sectoral contribution and measures to reduce SO2 emissions
Scenario A Scenario B Scenario C
Baseline

emissions in
2020 (kt)

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Conversion 645 325 30% 356 29% 364 27%
Process 693 261 24% 294 24% 304 23%
Industry 435 191 17% 221 18% 229 17%
Power plants 606 199 18% 208 17% 240 18%
Transport 217 98 9% 130 11% 138 10%
Domestic 202 23 2% 24 2% 63 5%
Waste 7 4 0% 5 0% 5 0%
Total 2805 1101 100% 1238 100% 1343 100%

Measures identified by the RAINS model to bring about these emissions reductions are as follows:
• Low-sulphur heavy fuel oil with sulphur content of less than 1% and gas oil with less than 0.1% for use

for residential and commercial boilers
• Low-sulphur coal and fuel oil in industrial combustion, in-furnace sulphur control measures and flue

gas desulphurisation in the higher ambition case
• Retrofitting flue gas desulphurisation for existing power generation plants and use of high-efficiency

FGD in new plants
• In the fuel production sector, use of low-sulphur fuel oil, controls on refinery processes and flue gas

desulphurisation for the higher ambition case
• Restrictions on open burning of agricultural and municipal wastes and better waste management
• Further reductions in the sulphur content of fuels used in national shipping/fishing

6.1.2. NOx emissions
Table 25b: RAINS - sectoral contribution and measures to reduce NOx emissions
Scenario A

Scenario A (without
further road transport

measures)
Scenario B Scenario C
Baseline

emissions
in 2020

(kt)

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Transport 3013 388 32% 0 0% 388 24% 388 22%
Industry 660 284 23% 364 32% 375 24% 404 23%
Process 538 286 24% 314 28% 322 20% 327 18%
Power plants 801 112 9% 225 20% 271 17% 403 23%
Conversion 264 118 10% 154 14% 160 10% 174 10%
Domestic 596 10 1% 56 5% 63 4% 71 4%
Waste 15 12 1% 13 1% 13 1% 13 1%
Total 5888 1210 100% 1125 100% 1592 100% 1780 100%

Measures identified by the RAINS model to bring about these emissions reductions are as follows:
• Primary combustion measures for oil-fired and gas-fired boilers in the residential and commercial

sectors and also light fuel-fired boilers in the higher ambition case
• Primary combustion measures and selective non-catalytic reduction (SNCR) for industrial combustion

for lower ambition levels, and selective catalytic reduction (SCR) in the higher ambition case
• For power plants, changes in primary combustion for all plants not required to fit SCR and fitting of

SCR for all new coal- and oil-fired power plants
• In the fuel production sector, use of SNCR for all countries and all levels of ambition and SCR for the

higher case in countries where NOx reductions are required
• Restrictions on open burning of agricultural and municipal wastes and better waste management
• Further measures on light-duty and heavy-duty diesel vehicles

Drucksache 16/1814 – 170 – Deutscher Bundestag – 16. Wahlperiode

Primary measures to reduce NOx emissions from small combustion sources have
been clearly identified as a cost-effective option by the RAINS model. For large
combustion sources, Selective Non-Catalytic Reduction (SCNR) and Selective
Catalytic Reduction have been identified as cost-effective depending on the level of
environmental ambition chosen. Measures on all types of diesel vehicles have also
been identified as cost-effective by the RAINS modelling, though will be subject to
more detailed review in the impact assessment for future emission standards.

6.1.3. PM2.5 emissions

For reducing emissions of particulate matter, particle filters of various types
(electrostatic precipitators, cyclones or fabric filters) are clearly identified as being
cost-effective in nearly all sectors. Particle filters for diesel road vehicles have also
been identified as cost-effective measures, though will be subject to more detailed
review in the impact assessment for future emission standards.

Table 25c: RAINS - sectoral contribution and measures to reduce PM2.5 emissions

Scenario A
Scenario A (without
further road transport

measures)
Scenario B Scenario C

Baseline
emissions
in 2020

(kt)

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Domestic 319 70 32% 77 39% 104 41% 127 45%
Process 213 49 22% 49 25% 51 20% 52 18%
Waste 46 42 19% 42 21% 42 16% 42 15%
Power plants 55 22 10% 22 11% 22 9% 22 8%
Industry 12 4 2% 4 2% 4 2% 5 2%
Other 112 3 2% 3 2% 3 1% 3 1%
Conversion 15 3 1% 3 1% 3 1% 4 1%
Transport 194 26 12% 0 0% 26 10% 26 9%
Total 964 218 100% 200 100% 255 100% 282 100%
Measures identified by the RAINS model to bring about these emissions reductions are as follows:

• Use of cyclones and fabric filter dedusters for boilers in the commercial sector and new residential
boilers (mainly biomass-fired)

• Use of high-efficiency dedusters for all countries and all ambition levels and maintenance measures
• For power plants, use of high-efficiency dedusters for all existing and new boilers using solid fuels and

good-housekeeping measures on oil-fired boilers (for all countries and all ambition levels). Likewise
for the fuel production sector and coking plants

• Restrictions on open burning of agricultural and municipal wastes and better waste management
• Further measures on light-duty and heavy-duty diesel vehicles and low-sulphur fuels for national

shipping and fishing vessels

6.1.4. Ammonia emissions

With respect to reducing ammonia emissions under Scenario A, it is estimated that
about 65% of the reduction comes from livestock activities, and the remaining 35%
from reduced use of mineral fertiliser where urea is used more effectively and partly
replaced by ammonium nitrate. This is the case for all ambition levels. The reduction
from livestock is achieved primarily through greater use of low-ammonia manure-
spreading methods, which produces 80 to 90% of the required reduction in this
sector. The rest is achieved through the introduction of low-emission housing with

integrated closed storage for poultry. Measures on poultry and fertiliser use appear
cost-effective for all scenarios and for all countries. Use of low-ammonia manure-

Deutscher Bundestag – 16. Wahlperiode – 171 – Drucksache 16/1814

spreading methods is suggested by the model for dairy cows and pigs and to a lesser
extent for other cattle and is required in about half of the EU Member States.

Under Scenario B about half of the required reduction is achieved from poultry and
fertiliser use as described above. The additional reductions over Scenario A are
achieved primarily through more extensive application of pig and cattle manures
with low-ammonia spreading methods in most Member States. In addition, better
storage of manure from pigs and cattle is suggested for some countries. Small
reductions are also made through efficient application of sheep manure and better
control of end-of-pipe emissions from the nitrogenous fertiliser industry. The latter
measures feature for nearly half of the EU Member States.

Table 25d: RAINS - sectoral contribution and measures to reduce NH3 emissions

Scenario A Scenario B Scenario C

Baseline
emissions
in 2020

(kt)

Reduction
from

baseline
(kt)

Share of
total

reduction in
EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction in
EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction in
EU-25

Poultry 470 267 32% 272 25% 274 23%
Fertiliser use 660 275 33% 275 25% 275 23%
Pigs 800 110 13% 183 17% 250 21%
Dairy cows 644 122 15% 174 16% 199 16%
Other cattle 676 44 5% 150 14% 161 13%
Processes 54 5 1% 26 2% 38 3%
Other animals 166 2 0% 7 1% 12 1%
Other 215 0 0% 0 0% 0 0%
Total 3686 826 100% 1088 100% 1209 100%

Measures identified by the RAINS model to bring about these emissions reductions are as follows:
• Use of low-ammonia manure-spreading methods
• Better use of fertiliser and reduced emissions from fertiliser manufacture
• Better storage of animal wastes from the pig and cattle sectors
• Low-emission housing for the intensive poultry sector
• Low-nitrogen feedstuffs

Scenario C requires an additional reduction of 120 kilotonnes of ammonia beyond
Scenario B. The model indicates that this can be achieved through reduced nitrogen
feeding strategies for pigs in about half of the Member States and greater use of low-
ammonia manure-spreading methods for pigs and cattle (for nearly all Member
States). Further small reductions are estimated for dairy cows using low-emission
housing, low-ammonia application of sheep manures in most Member States, and
further reductions in emissions from the fertiliser industry, although the latter do not
amount to a major proportion of the overall emissions reductions required.

6.1.5. VOC emissions

The VOC emissions reduction requirements of the three scenarios vary between 700
and 1150 kilotonnes in 2020. Some 20 to 30% of that reduction is to come from
process emissions (e.g. control of fugitive losses from the organic chemical industry)
and a change in road asphalting methods (a move away from cutback to emulsion
bitumen).
The other reductions can be achieved in paint application (coatings), solvent use and
liquid fuel production. A Europe-wide ban on open burning of agricultural residues

Drucksache 16/1814 – 172 – Deutscher Bundestag – 16. Wahlperiode

and more efficient combustion of biomass in the residential sector (see also the
section on particulate matter) are also seen as cost-effective measures under
Scenario B.

Between 10 and 15% of the reduction (for A and C respectively) is achieved from
liquid fuel production, while under Scenarios A and B improved flaring and
reduction of fugitive losses in refineries (process and storage) play a prominent role
in most countries. Under Scenario B and especially Scenario C, reduction of
emissions from oil and gas platforms in the UK makes a significant contribution
(nearly half of the reduction achieved in the ‘Conversion’ sector under Scenario C).
In addition, measures for gasoline distribution appear in countries that have not yet
introduced such legislation (Stage II).

Table 25e: RAINS - sectoral contribution and measures to reduce VOC emissions
Scenario A Scenario B Scenario C

Baseline
emissions

in 2020 (kt)

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Reduction
from baseline

(kt)

Share of
total

reduction
in EU-25

Reduction
from

baseline
(kt)

Share of
total

reduction
in EU-25

Coatings 1008 183 27% 300 31% 335 29%
Solvents 1402 156 23% 246 25% 269 24%
Processes 880 219 32% 239 24% 244 21%
Conversion 763 80 12% 125 13% 167 15%
Waste 182 42 6% 51 5% 55 5%
Domestic 531 5 1% 16 2% 73 6%
Transport 1036 0 0% 0 0% 0 0%
Other 114 0 0% 0 0% 0 0%
Total 5916 685 100% 977 100% 1143 100%

Measures identified by the RAINS model to bring about these emissions reductions are as follows:
• Control of fugitive emissions from the chemical industry
• Use of emulsified bitumen for road surfacing
• Decreased flaring and lower fugitive losses in fuel production processes
• Reduced solvent use in the coatings industry and decorative paints
• Restrictions on burning of agricultural residues and improved residential biomass burning
• Reduced solvent use and solvent content of products such as printing inks and adhesives
• End-of-pipe controls on solvent emissions from installations

Further reduction of the solvent content of coatings used in industrial applications
and for decorative purposes (or more widespread use of low-solvent or solvent-free
coatings) still appears to be an attractive option in all scenarios. Under Scenario A
about 25% of the total reduction is expected to come from the ‘Coatings’ sector with
more than 70% achieved in industrial applications. However, these reductions appear
in only a few countries. Under Scenario B more than half of the countries implement
measures in this sector, achieving 30% of the total reduction required, again mostly
from industrial application of paints, especially wood coatings. Under Scenario C a
slightly larger reduction is expected, mostly from decorative paint applications (both
professional and do-it-yourself) requiring more stringent control than under the
‘Products Directive’ – the so-called ‘DECO Paint Directive’. This measure is one of
the solutions for virtually all Member States.

The remaining 20% of the reduction required under all scenarios is in the ‘solvent

use’ sector. This encompasses a large number of activities with installations of
varying sizes. Therefore a mixture of alternative end-of-pipe measures (carbon

Deutscher Bundestag – 16. Wahlperiode – 173 – Drucksache 16/1814

adsorption and thermal incineration) is required to attain the estimated reductions.
Especially under Scenario A a variety of sectors each contribute small amounts to the
total reduction, while under Scenarios B and C further reductions in the printing
sector, especially packaging, through substitution of adhesives and inks for low-
solvent or solvent-free inputs, reduction in the solvent content of cleaning and
dampening agents, and wider use of carbon adsorption play a significant role (up to
70% of reductions). Further reductions are expected in metal degreasing, industrial
adhesive application and a number of smaller sectors.

6.2. Measures considered

Following the indicative results of the integrated assessment modelling associated
with the three ambition scenarios, the measures described below will be considered
by the Commission for further action. These measures are at different stages of
consideration and development and generally each will need to be accompanied by a
detailed and careful impact assessment before definitive proposals are put forward.

6.2.1. Revision of the National Emissions Ceilings Directive

The Commission will propose revised emission ceilings in the NECD in 2006 based
upon the interim objectives identified in this strategy.

The natural instrument for setting emission reduction targets is the NEC Directive,
which sets emission ceilings for each Member State. At the moment, this Directive
sets emissions ceilings for four pollutants (NOx, SO2, NH3 and VOC) which are to be
attained by 2010 but leaves the Member States to decide how. This allows flexibility
and reduces costs. The Commission will put forward a proposal to amend this
Directive in 2006 and establish new ceilings that are consistent with the interim
objectives of the Strategy and Scenario B. The Commission will also review other
aspects of the NECD, including simplifying implementation and reporting, using
emissions trading schemes and introducing targets for primary particulates

The integrated assessment modelling demonstrated that further measures need to be
taken to reduce NOx and SO2 emissions from large combustion plant in the power
production, industrial and fuel production sectors. Currently the Commission has no
plans to amend the existing obligations in the Large Combustion Plant Directive
(LCPD) which regulates large boilers with a thermal rating in excess of 50 MWh.
However, the Commission will, inter alia, pursue the option of introducing regional
(including regional transboundary) emissions trading for NOx and SO2 when revising
the NEC Directive in 2006. This would permit individual plants to trade emissions
reductions that go beyond current LCPD limits.

6.2.2. Revision of vehicle emissions limits

As specified in Directive 98/69/EC, the “Euro 4” emission limits entered into force
for cars and other light-duty vehicles on 1 January 2005. Given the continuing health
risks posed by PM and ozone, a number of Member States have announced that they
intend to give tax incentives for vehicles that meet even tighter limit values. In this
situation, and driven by a desire to prevent fragmentation of the internal market, the

Drucksache 16/1814 – 174 – Deutscher Bundestag – 16. Wahlperiode

Commission has put forward a framework for fiscal incentives for cleaner diesel
vehicles96 to go beyond the current Euro 4 standard for diesel cars. The integrated
assessment modelling shows that further measures on diesel particulates from light-
duty and heavy-duty diesel vehicles may be warranted. The Commission will put
forward a proposal later in 2005 to revise downwards the current Euro 4 emissions
limits for light-duty diesel vehicles. These new limits will be in line with the
Commission’s previous framework for fiscal incentives, but will be accompanied by
a separate impact assessment.

New vehicle emission standards and Nitrogen dioxide

Two ambient air quality standards exist for nitrogen dioxide (NO2) which enter into force on
1 January 2010. The first is a maximum hourly concentration of 200µgm-3 (not to be
exceeded more than 18 times per calendar year) and the second, and probably the most
stringent, is a maximum annual average concentration of 40µgm-3.

High temperature combustion results in the emission of a mix of nitrogen oxides (NOX) in
the form of nitric oxide (NO) and nitrogen dioxide. Nitrogen dioxide can also be formed
from the atmospheric oxidation of nitric oxide. The amount of directly emitted nitrogen
dioxide depends upon the particular combustion conditions such as temperature and oxygen
content of the fuel-air mixture.

The concentration of nitrogen dioxide in air that is measured at a particular air quality
monitoring station will be influenced by the magnitude of nitrogen dioxide emissions nearby
and by the amount of nitric oxide that can be converted locally in the vicinity of the sampling
point. This latter contribution depends upon the local availability of oxidants in the air such
as ozone. Road vehicles contribute significantly to emissions of nitrogen oxides and to the
measured concentrations of nitrogen dioxide in urban areas. Historically, nitric oxide
comprised around 90% of the NOX mixture emitted from road vehicles.

There are currently exceedences of the air quality limit values for nitrogen dioxide in urban
areas. Moreover, preliminary indications show that exceedences will remain in 2010 when
the limit values enter into force even though emissions of nitrogen oxides are decreasing as a
result of European vehicle exhaust standards. In this context, a cause of concern is the
increasing proportion of directly emitted nitrogen dioxide97. This is because of three factors.
First, diesel vehicles comprise an increasing fraction of the vehicle fleet and diesel vehicles
emit a greater proportion of nitrogen dioxide. Second, some diesel particulate filters actively
convert nitric oxide to nitrogen dioxide in order to destroy soot particles, thereby increasing
the proportion of nitrogen dioxide. Thirdly, the proportion of nitrogen dioxide increases in
slow moving traffic.

The reported results from the DEFRA study above may have implications for future
European vehicle emission standards. More specifically, emission limit values for total NOX
may need to be modified so as to (1) reflect better the proportion emitted as nitrogen dioxide
and (2) contribute to attainment of Community air quality objectives for nitrogen dioxide.
96 SEC(2005) 43 of 12 January 2005

http://www.europa.eu.int/comm/enterprise/automotive/pagesbackground/pollutant_emission/sec_2005_43.pdf

97 “Nitrogen dioxide in the United Kingdom, prepared for the Department for Environment, Food and
Rural Affairs by the Air Quality Expert Group, March 2004.
http://www.defra.gov.uk/environment/airquality/aqeg

Deutscher Bundestag – 16. Wahlperiode – 175 – Drucksache 16/1814

As specified in Directive 88/77/EC, the “Euro 5” emission limit values for heavy-
duty vehicles will enter into force from October 2008. A proposal for further
tightening of the emissions from heavy-duty vehicles will be put forward by the
Commission shortly after the proposal for Euro 5 standards for cars and light-duty
vehicles.

6.2.3. Emissions from small-scale combustion installations

The integrated assessment modelling demonstrated the potential of measures to
reduce PM2.5 emissions in the residential and commercial combustion sector,
particularly in respect of residential biomass combustion. High-efficiency dedusters
were also cost-effective for use in the industrial combustion sector.

Small combustion plants are an increasingly important source of emissions, but they
are not regulated at Community level. For industrial combustion sources below
50 MWh the Commission will assess whether it is appropriate to extend the scope of
the IPPC Directive when it is reviewed in 2006. Harmonised technical standards will
also be developed for domestic combustion appliances and associated fuels,
including coal and biomass. Inefficient biomass combustion can emit relatively high
amounts of particulate matter and methane, thus diminishing the positive
contribution made by biomass as a renewable source. Therefore efforts should be
made to ensure that biomass is incinerated under optimal conditions.

Efforts could be also be made to shift away from the use of coal and other solid fossil
fuels for domestic heating, particularly in the most polluted areas. In the case of low-
income households, the Commission will consider how Community funds could be
used to help promote such a shift and cleaner combustion methods, without
excluding cleaner use of coal.

More efficient use of energy, greater use of renewable fuels and better use of natural
resources can all help to reduce emissions of harmful particulate matter as well as
mitigating the impacts of climate change and addressing concerns over the security
of energy supplies. To that end, if feasible, small residential and commercial
buildings could be included in an extended directive on energy efficiency.

6.2.4. VOC emissions from refuelling of passenger cars

The Commission will examine the scope for, and cost-effectiveness of, Community
action to reduce emissions from the refuelling of cars at service stations ( “Stage II”).
If appropriate, a legislative proposal will be developed in early 2006.

6.2.5. NOx and SO2 emissions from ships in European seas

Unless action is taken, emissions of sulphur dioxide and nitrogen oxides from ships
in EU seas are projected to be greater than all land-based emissions in 2020. Action
is needed, but shipping is a global industry and clearly global solutions are
preferable, particularly as the Law of the Sea98 imposes limits on what can be
regulated on a regional or national basis. Mindful of these constraints, the
Commission has already taken action on ship emissions, adopting an EU strategy

98 United Nations Convention on the Law of the Sea, to which the Community is a Party.

Drucksache 16/1814 – 176 – Deutscher Bundestag – 16. Wahlperiode

accompanied by a proposal for a directive on sulphur in marine fuel.99 The directive
will set sulphur limits for fuels used in all EU seas and ports. It was finalised by the
European Parliament in April 2005 and will be formally adopted later this year.

A scenario for ship emissions was developed, which applied to all ships irrespective
of flag and in all EU seas. This included the existing legislation plus the
implementation of relatively straightforward additional measures:

– International Maritime Organisation NOx emission standards for all ships built
since 2000 (as set out in the MARPOL Convention, Annex VI on air pollution);

– limits on marine fuel sulphur, as provided for in the abovementioned proposal for
a directive, i.e. 1.5% sulphur fuel oil for all ships in the North Sea and the Baltic
Sea; 1.5% sulphur fuel for all passenger ships in the other EU seas; 0.1% sulphur
fuel for all ships at berth in ports;

– slide valve retrofit on all slow-speed engines installed before 2000 (later engines
already have these) with costs below €50 per tonne of NOx avoided;

– internal engine adjustments for all new engines after 2010.

Scenario B for all EU sources of air pollution was estimated with and without this
package of measures on ship emissions. The additional cost of these measures for
ships was estimated by the RAINS model at €28 million per annum. However,
application of the measures for ships results in cost savings for land-based sources of
€159 million per annum whilst maintaining the same level of environmental and
health protection. Clearly, measures for ships can be very cost-effective in reducing
emissions and result in net savings of €131 million per annum.

The Commission therefore intends to take the following action:

• pursue negotiations on stricter air emission standards for ships under Annex VI to
the International Maritime Organisation’s Marine Pollution Convention. The
Council has called on the Commission to consider EU regulation for NOx
emissions if no tighter standards are agreed by 2006;100

• promote the use of shore-side electricity by developing guidelines and considering
energy tax exemptions for ships using such facilities;

• ensure that low-emission operation is applied effectively as a criterion for EU
funding (Marco Polo and Motorways of the Sea);

• examine the feasibility of using market-based instruments to promote low-
emission shipping, including differentiated port dues in the context of the
Commission’s forthcoming proposal on maritime infrastructure charging;

99 Communication from the Commission to the European Parliament and the Council on a European

Union strategy to reduce atmospheric emissions from seagoing ships, COM(2002) 595.
100 Council conclusions of 23.12.2003 (16369/03).

Deutscher Bundestag – 16. Wahlperiode – 177 – Drucksache 16/1814

• consider whether/how to incorporate international shipping when revising the
NEC Directive.

6.3. Integration of air quality concerns into other sectors

6.3.1. Agriculture

Cattle farming, the pig and poultry sector and the use of mineral fertilisers account
for the vast majority of ammonia emissions. The recent reform of the Common
Agricultural Policy should bring about a reduction in ammonia emissions from
agricultural sources following: (1) the removal of the link between financial support
and the obligation to retain specific number of animals; (2) the removal of incentives
towards intensification which will result in a reduction of mineral fertiliser use; and
(3) the introduction of obligatory cross compliance with environmental directives as
a condition for granting the full direct payments. Further improvements are also
expected to result from an effective implementation of certain environmental
Directives, such as the Nitrates Directive, 101 the IPPC Directive, the Environmental
Impact Assessment Directive and the Water Framework Directive.

However, these improvements could be insufficient to meet the objectives of the
Strategy. Given that nitrogen plays a role in several environmental problems, the
Commission will pursue a coherent approach to nitrogen management consistent
with the recent Nanjing Declaration102. Priority will be attached to measures and
policies to reduce “excessive” nitrogen use in agriculture and which simultaneously
address nitrates in water, and ammonia and nitrous oxide emissions to air. Such
policies could address (1) the nitrogen content of animal feedstuffs; (2) excessive use
of nitrogen fertilisers; and (3) the promotion of further research into the nitrogen
cycle and its environmental implications.

In order to comply with existing and new emissions ceilings for ammonia when the
NECD is revised in 2006, the Member States will have to prepare plans and
programmes to demonstrate how they will meet these ceilings. The achievement of
reduction objectives may require the development of national actions plans,
including obligations applicable at farm level.

The current Rural Development Regulation and the Commission proposals for rural
development for 2007-13 provide several possibilities to tackle ammonia emissions
from agricultural sources. These include measures related to farm modernisation,
meeting standards and agri-environment. The Commission urges the Member States
to make full use of these measures. In particular, Member States can design agri-
environment schemes which go beyond environmental legislative obligations and
minimum requirements for fertiliser use identified in rural development programmes.
These could also help towards a more effective compliance with the CLRTAP code
of good farming practice.103

101 Directive 91/676/EEC, OJ L 375, 31.12.1991, p.1.
102 3rd International nitrogen conference, October 2004 Nanjing China.
103 As required in Annex IX of the CLRTAP Gothenburg Protocol

Drucksache 16/1814 – 178 – Deutscher Bundestag – 16. Wahlperiode

6.3.2. Transport

In keeping with the commitments made in the White Paper on a common transport
policy,104 the Commission will further encourage shifts towards less polluting modes
of transport, alternative fuels and the internalisation of externalities into transport
costs. With regard to infrastructure charging, the Commission has already made
proposals as regards the charges for the use of road transport infrastructure
applicable to heavy vehicles (Eurovignette) and a common framework for all modes
will follow. Other possible measures are presented below and these could be
complemented by additional measures when the White Paper is reviewed in 2005”.

6.3.2.1. Land transport

The Commission will be considering measures to reduce emissions such as:

• practical guidelines for differentiated charging according to air pollution
damage and impacts in environmentally sensitive areas;

• mandatory inclusion of external energy and air pollution costs in public
procurement decisions for vehicles and transport services;

• establishment of a common framework for designating low-emission zones.

Moreover, since older road vehicles cause disproportionate levels of pollution,
Member States should consider retrofitting and scrapping schemes, particularly for
public service vehicles, when drawing up plans and programmes to meet air quality
objectives. In its thematic strategy on the urban environment, the Commission is
exploring how best to help Member States and local authorities devise and
implement sustainable urban transport plans which combine improvements in public
transport with demand management in order to ensure a fair contribution of transport
activities to the achievement of air quality, noise and climate change objectives”.

6.3.2.2. Aviation

Measures offering potential synergies between climate change and air quality105 will
be discussed in a forthcoming communication on the use of economic instruments to
reduce the climate change impact of aircraft.

6.3.3. Community Funds

Community funds could be used to support attainment of the environmental
objectives described above, notably in connection with the development of
sustainable transport systems, sustainable and cleaner energy supplies in urban areas,
and for institutional capacity-building to allow more effective implementation of air
pollution abatement measures.
104 COM(2001) 370 final, 12.9.2001.
105
The impact of air transport on the air quality in the vicinity of transport is not limited to emissions from

airplanes during taxi, take-off and landing, and should take into account those from ground based traffic
induced by air transport (transport of passengers, staff and goods to/from airports; busses, trucks and
service vehicles on runways)

Deutscher Bundestag – 16. Wahlperiode – 179 – Drucksache 16/1814

6.4. Applying effective policy instruments

While preparing the Strategy, in 2004 the Commission, together with the CLRTAP,
organised a Conference on Policy Instruments to Reduce Air Pollution. It concluded
that both traditional regulation and market-based instruments could be applied
successfully to reduce emissions of NOx and SO2. In practice, market-based
instruments often build on the legislative basis, and are used together with direct
regulation as part of policy packages. Recently EU Member States have used various
types of market-based instruments affected by different sets of Community rules on
taxes, State aid, emission trading and internal market considerations.

Since market-based instruments are still at the pilot stage and not yet applied
routinely, experimentation with flexible instruments in the policy mix should be
encouraged. Furthermore, additional ex-post evaluations of the instruments currently
used should be carried out more systematically.

The Commission will propose legislation based on a clear long-term policy
framework for air pollution, so that this is compatible with its other objectives,
notably those of climate change. In this context, when considering instruments it will
be particularly mindful to meet specific objectives. Economic instruments, including
NOx and SO2 emissions trading both for fixed installations and for ships, are part of
such considerations to ensure that the environmental objectives are met at the lowest
cost and, thus, with minimum impact on competition. The Commission will analyse
the scope for introducing such instruments, inter alia during revision of the NECD in
2006.

Looking at the legislation on specific sources, “averaging, banking and trading”
schemes could perhaps be used as cost-effective policy instruments. The
Commission has already proposed such instruments, first in 2000 for reducing air
pollution from non-road machinery and then again in 2003 for phasing out
fluorinated greenhouse gases from mobile air conditioners.106

Conference on Policy Instruments to Reduce Air Pollution

The Commission hosted a conference on policy instruments to reduce air pollution in
Brussels on 11 and 12 November 2004 together with the CLRTAP Network of Experts on
Benefits and Economic Instruments. The main objectives were:

(a) to bring together the latest research findings from practical applications of economic and
other instruments to reduce air pollution in the EU and ECE countries;

(b) to give policy guidance for finalisation of the Thematic Strategy on Air Pollution; and

(c) to provide input for the forthcoming review of the 1999 Gothenburg Protocol, which will
be formally initiated after the Protocol enters into force.

For details, see http://europa.eu.int/comm/environment/air/nebei_workshop/index.htm.

106 COM(2000) 840 of 18.12.2000 and COM(2003) 492 of 11.8.2003.

Drucksache 16/1814 – 180 – Deutscher Bundestag – 16. Wahlperiode

7. IMPACT ASSESSMENT FOR DIRECTIVE ON “AMBIENT AIR QUALITY AND CLEANER
AIR FOR EUROPE”

A proposal to revise substantially existing Community legislation on ambient air
quality accompanies the Thematic Strategy on air pollution. An impact assessment is
therefore required to support this proposal. However, rather than create a separate
assessment with unnecessary duplication of work, the detailed assessment to support
the specific options set out in the proposal has been included here. This is logical
given that the same economic modelling framework has been used in both cases and
given the transferability of results from the Thematic Strategy to the legislative
proposal.

7.1. Better regulation: Streamlining current air quality legislation

In line with the general initiative to streamline existing legislation, the new proposal
will aim at revision of (i) the first daughter directive on ambient air quality including
the air quality framework directive (96/62/EC), (ii) the second and the third daughter
directives (2000/69/EC, 2002/3/EC) and (iii) the Council Decision on the exchange
of information related to air quality monitoring in general (97/101/EC). This would
lead to one comprehensive Directive covering the abovementioned regulations. In
doing this the new proposal will aim at some overall objectives such as:

– Condensing everything into a single legal act and removing obsolete provisions

– Bringing data provision, assessment and reporting into the 21st century

– Reforming and modernising what did not work well enough

– Updating limit values according to the latest science.

Implementation of the current directives would be improved and strengthened. A
general provision on natural contributions would be included, so that Member States
will be able to discount natural contributions to measured levels of pollutants as
Member States have no power to tackle such sources.

In addition, there may be compliance problems in the short term with some ambient
air quality standards. The Commission proposes to permit a delay for their
attainment. This would be restricted to individual zones or agglomerations, provided
a Member State can demonstrate objectively verifiable conditions (including strict
compliance with certain Community legislation contributing to an improvement of
air quality). As a quid pro quo, the Member State would have to develop and
implement an air pollution abatement programme to ensure that the limit values are
attained upon expiry of the extension. It has not been possible to quantify the impact
of this proposal, which is a “safety valve” against unduly high abatement costs in
exceptional situations. However, all reasonable measures need to have been taken.
Thus, a delay of the attainment date can be regarded as a means of safeguarding
against uncertainty between the models that predict air quality and the actual
situation in specific locations in the EU.

Deutscher Bundestag – 16. Wahlperiode – 181 – Drucksache 16/1814

Due to the proposed regulation, the PM2.5 monitoring network needs to be expanded
by an estimated 800-1200 stations, given that some 100 PM2.5 monitoring stations
already exist in the Community.107 It should be noted that under current air quality
legislation there is a requirement to monitor PM2.5 concentrations.108 Thus, the
proposed regulation does not in itself increase the monitoring requirements. In other
words, the Commission does not consider that the additional monitoring
requirements increase the regulatory burden for Member States.

For transparency, the Commission has estimated the costs of establishing and
running 1200 additional PM2.5 monitoring stations, assuming that 1000 of them
would use the existing monitoring infrastructure (Table 26). When modelling is also
employed, it may be possible to reduce the required additional number of stations to
about 800, with 700 of them using the existing monitoring infrastructure. This needs
to be seen in a context where PM2.5 will be subject to regulation from 2010 onwards
following establishment of the percentage reduction in the average urban background
concentrations of PM2.5 for the period 2010 and 2020. Thus about half of the costs
will be incurred from 2008 onwards as urban background monitoring of PM2.5 needs
to have been established. To assess progress towards compliance with the
concentration cap in 2010, it is required that all PM2.5 monitoring stations are in
place at the time of transposition of the new Directive.

Table 26: Annualised investment and running costs of PM2.5 compliance
monitoring in EU-25 by 2010 (thousands of euros). Four options are explored:
additional 800 or 1200 stations, with/without 500 SO2 measurement
replacement.

Cost per station Total
Stations Option 1 Option 2 Option 1 Option 2
Additional PM2.5 measurement
points (no infrastructure needed) 700 9.3 5.2 6500 4500

Additional PM2.5 measurement
points (infrastructure needed) 100 11.8 7.7 1200 800

Total 800 7700 5300

Additional PM2.5 measurement
points (no infrastructure needed) 1000 9.3 5.2 9280 7250

Additional PM2.5 measurement
points (infrastructure needed) 200 11.8 7.7 2400 1550

Total 1200 11600 8800
Option 1: Assuming no replacement of SO2 station monitoring
Option 2: Assuming that 500 SO2 monitoring stations will be replaced by PM2.5 monitoring

107 In comparison, there are about 1000 measurement points for PM10 in the EU-25.
108 Article 5 (2) of the 1st daughter directive states that “Member State shall ensure that measuring station
to supply data on concentrations of PM2.5 are installed and operated. Each Member State shall choose
the number and siting of the stations at which PM2.5 is to be monitored as representative of
concentrations of PM2.5 within that Member State.” However no minimum requirement for the number
of stations has been given, as was the case for PM10.

Drucksache 16/1814 – 182 – Deutscher Bundestag – 16. Wahlperiode

One specific issue is that Member States seem to have an overcapacity of monitoring
points on SO2 at least when compared with the requirements of the current air quality
legislation. Therefore, Table 23 also gives the estimates assuming that 500
monitoring points of SO2 could be replaced by PM2.5 monitoring stations.109 While
there would be no saving in investment costs, there would be a saving as far as
recurrent costs (in particular labour costs) are concerned.

In sum, the Commission estimates that the annualised costs of running the additional
PM2.5 monitoring stations would be between €5.3 and €11.6 million, depending on
what extent Member States employ modelling and replace SO2 monitoring with
PM2.5 monitoring.

A general scheme for background monitoring will be integrated, following the
approach introduced with the fourth daughter directive. It will build upon current
monitoring requirements under the CLRTAP and will permit a greater use of models
in the assessment of air quality which Member States are obliged to undertake. Thus,
in the longer term, the Commission anticipates a shift towards greater use of
modelling and less use of more expensive monitoring. In accordance with this
general scheme, the current proposal will introduce a requirement for the background
monitoring of PM2.5 mass concentrations and chemical speciation. It is estimated that
monitoring should take place at approximately 40 stations in the EU-25, with
estimated annualized110 investment and running costs of €1 million. It is considered
that a minimum of 75% of stations will already be operational under the EMEP
programme111 or to meet the requirements of the fourth daughter directive.112 New
sampling equipment, increased station maintenance costs, labour and especially
chemical analysis costs (estimated at an annual cost of €24.000 per station, assuming
weekly measurements of major inorganics, elemental and organic carbon) contribute
to the final estimate.

The reporting obligations based on the Exchange of Information Decision and under
the air quality legislation (framework and daughter directives) will be amended in
such a way that all information will eventually feed into a shared information system
to be established under the INSPIRE directive when adopted.113 The shared
information system will be used for public information, for the state of environment
assessments, and for checking compliance with the environmental objectives. The
provisions for reporting will be prepared so as to allow a smooth shift towards future
requirements under the INSPIRE Directive. It is also important to ensure that air
109 Estimation of overcapacity explicitly refers only to comparison with the requirements of the European

air quality legislation. Member States might have additional reasons to continue with monitoring. In
addition, the geographical distribution of overcapacity is very non-uniform across EU-25. However, the
continuation of certain monitoring programmes on ‘historical grounds’, rather than current and future
information needs, has been acknowledged to have important potential to streamline environmental
monitoring in general.

110 Throughout these estimates investment costs have been annualised using a 4% discount rate. The
assumption is that measurement equipment will have a lifetime of 10 years.

111 Protocol on a European Monitoring and Evaluation Programme under the Convention on Long Range
Transboundary Air Pollution (www.unece.org)

112
Directive 2004/107/EC OJ L23, 26.1.2005, p. 3 relating to arsenic, cadmium, mercury, nickel and
polycyclic aromatic hydrocarbons in ambient air.

113 Proposal for a Directive of the European Parliament and of the Council establishing an infrastructure for
spatial information in the Community (INSPIRE) COM(2004) 516 final, SEC (2004) 980.

Deutscher Bundestag – 16. Wahlperiode – 183 – Drucksache 16/1814

quality assessment - required to be performed throughout the territory of the Member
State - will be made available in the geo-referenced format. This would enable
efficient GIS tools to be used for further assessments at European scale, and for
enhanced public information. This shared information system is expected to reduce
the administrative burden upon the Member States in terms of reducing the numbers
of reports that have to be prepared and transmitted to the Commission. Only data
needs to be made available, simplifying the tasks of Member States while providing
information to citizens faster.

7.2. Health advice

Exposure to particulate matter in ambient air is associated with various impacts on
health.

– Increase in lower respiratory symptoms
– Reduction in lung function in children
– Increase in chronic obstructive pulmonary disease
– Reduction in lung function in adults
– Reduction in life expectancy, owing mainly to cardiopulmonary mortality and

probably to lung cancer

As previously described, particles can be classified according to their aerodynamic
diameter so that, for example, PM10 and PM2.5 refer to all particles with a diameter
less than 10 microns (µm) and 2.5 microns respectively. Fine particulates are those
of less than PM2.5 while coarse particulates are those in the PM10-2.5 fraction. Current
Community legislation (Directive 1999/30/EC) has established daily and annual limit
values for PM10 which came into force on 1 January 2005. The daily limit value is set
at 50µg/m3 as a 24-hour average not to be exceeded more than 35 times per calendar
year. Annual average concentrations shall not exceed 40µg/m3. Directive
1999/30/EC also contains indicative limit values for PM10 to be attained by 1 January
2010. However, these values would need to be confirmed by the Institutions before
becoming legally binding.

In the Summary of its Systematic Review of Health Aspects of Air Pollution in
Europe, the WHO commented that114

“Many studies have found that fine particles have serious effects on health, such as
increases in mortality rates and in emergency hospital admissions for cardiovascular
and respiratory reasons. Thus there is good reason to reduce exposure to such
particles. Coarse particles seem to have effects on, for example, hospital admissions
for respiratory illness, but their effect on mortality is less clear. Nevertheless, there
is sufficient concern to consider reducing exposure to coarse particles as well as to
fine particles. Up to now, coarse and fine particles have been evaluated and
regulated together, as the focus has been on PM10. However, the two types have
different sources and may have different effects, and tend to be poorly correlated in

114 Systematic Review of Health Aspects of Air Pollution in Europe, WHO Regional Office for Europe,

June 2004, www.euro.who.int

Drucksache 16/1814 – 184 – Deutscher Bundestag – 16. Wahlperiode

the air. The systematic review therefore recommended that consideration be given to
assessing and controlling coarse as well as fine PM”.

The Commission services consulted the Scientific Committee on Health and
Environmental Risks (SCHER) on some specific questions related to air pollution
that had not been addressed in the WHO project "Systematic review of air pollution
health aspects in Europe". On 18 March 2005, SCHER adopted its response (see
Box). The SCHER specifically stated that there is increasing epidemiological
evidence that exposure to PM2.5 may be associated with adverse health effects
especially in susceptible populations and vulnerable groups. The SCHER also
pointed to the fact that at present there is no European study on the exposure-
response function for long-term PM2.5 effects, so setting a PM2.5 standard could be
surrounded with uncertainties. However, SCHER acknowledges the evidence of
PM2,5 as health relevant. It further implied that health impact assessments should be
based on the best available exposure response function, i.e. derived from U.S. studies
to take account of uncertainties.

The Working Group on PM was established as an integral part of the CAFE
programme and endorsed by the CAFE Steering Group to assist the European
Commission in reviewing Directive 1999/30/EC. The Working Group included
experts from Member States, industry, NGOs, CLRTAP, the World Health
Organization and the European Environment Agency. In the light of WHO health-
related findings, the PM Working Group recommended115 the use of PM2.5 rather
than PM10 as the principal metric for assessing exposure to particulate matter. The
Group further recommended that a PM2.5 limit should replace the existing PM10 limit
values and that the PM10 indicative limit values should be reclassified as target
values to help control the coarse fraction, PM2.5-10.

115 http://europa.eu.int/comm/environment/air/cafe/pdf/working_groups/2nd_position_paper_pm.pdf

Deutscher Bundestag – 16. Wahlperiode – 185 – Drucksache 16/1814

Opinion of the Scientific Committee on Health and Environmental Risks

This opinion is publicly available at the following web site:
http://europa.eu.int/comm/health/ph_risk/committees/04_scher_opinions_en.htm

"The SCHER agrees, that there is increasing epidemiological evidence that acute PM2.5 exposure is related to
adverse health effects, especially in susceptible and vulnerable groups. However, there is currently a lack of
knowledge on the exposure-response function for health effects in Europe following chronic exposure. Thus the
establishment of an air quality standard based upon PM2.5 will be surrounded with uncertainties. The major
sources of PM2.5 and thus the toxicity are different between the USA and Europe, and even within Europe due to
different type and level of economic activities. These differences may influence the exposure-response function
used for HIA.

The SCHER acknowledges the evidence for PM2.5 as health-relevant. The importance of separate guidelines for
coarse and fine particles are evident and presently there is not sufficient health effects-related evidence
available to exclude PM10 as a standard and to favour PM2.5 mass based standard as the sole health-relevant
indicator. Similar to the US EPA recommendation, SCHER proposes to continue monitoring both PM2.5, and the
PM10-PM2.5 fraction, as the relative importance of these two fractions has not been fully resolved. The sources
and chemical composition of coarse and fine particles differ and thus the toxicity of the particles. Furthermore,
the ratio between the two types of particles differs greatly with the season and geographic regions.

The SCHER recommends that, in the absence of a robust European E-R function, the E-R function based upon
the US data could in general be used for HIA. However, there are uncertainties in applying non-European
exposure-response functions to European populations, e.g., differences in monitoring protocols and PM sources.
Differences in the sources of PM may have consequences for the toxicity and therefore for the exposure –
response function.

The SCHER acknowledges the large difference in toxicity of particles depending on their size and chemical
composition. This toxicity will furthermore depend on the source of the particles, and will furthermore show both
seasonal and geographical variations. A systematic approach to study the toxicity as a function of these
variables is warranted. Integration of toxicological information into epidemiological studies will facilitate the
establishment of more accurate exposure-response function.

The SCHER is aware of the emerging evidence of variation in susceptibility, acquired or genetic, to ambient
PM2.5. This variation should be considered when establishing the air quality guidance values in order to protect
the most susceptible and vulnerable groups.

A critical level for ozone to protect the vegetation in Europe has been established within the convention on
LRTAP. New experimental studies suggest that a new AOT40 value should be introduced to protect forests from
harmful effects due to ozone."

Drucksache 16/1814 – 186 – Deutscher Bundestag – 16. Wahlperiode

7.3. Reducing exposure to PM2.5

The overwhelming evidence that the Commission has received can be summarised
as follows: (i) there is a health risk from PM2.5, (ii) PM2.5 is a better metric to
represent the general health risks of ambient levels of particulate matter, and (iii) the
risk from the coarse fraction (between PM2.5 and PM10) cannot be ignored. Given
this, the Commission has considered the following options for revising the existing
provisions of Directive 1999/30/EC in relation to particulate matter in ambient air.
Each option assumes that the existing limit values for PM10 remain in force.

(1) Introduce a legally binding requirement to reduce annual average
concentrations of PM2.5 throughout the territories of the Member States by a
given percentage in 2020 relative to the position in 2010 as determined by
three years of monitoring of PM2.5 concentrations in urban background
locations;

(2) Introduce a target to reduce annual average concentrations of PM2.5
throughout the territories of the Member States by a given percentage in 2020
relative to the position in 2010 as determined by three years of monitoring of
PM2.5 concentrations in urban background locations;

(3) Replace the indicative limit values for PM10 for the year 2010 by a legally
binding limit value for annual average concentrations of PM2.5 to be attained
by 2010. Such a limit value would be designed to offer a high degree of
protection to the population and would apply everywhere in the territory of
the Member States;

(4) Replace the indicative limit values for PM10 for the year 2010 by a legally
binding “cap” for annual average concentrations of PM2.5 to be attained by
2010. Such a “cap” or ceiling would be designed to limit unduly high risks to
the population and would apply everywhere in the territory of the Member
States;

(5) Replace the indicative limit values for PM10 for the year 2010 by a non-
binding target for the annual average concentrations of PM2.5 to be attained as
far as possible by 2010. Such a target value would be numerically identical to
the limit value in option (2) above;

(6) Do nothing, i.e. do not introduce any requirement to reduce human exposure
to PM2.5.

Given the overwhelming health evidence and risks from exposure to PM2.5, option
(6) of doing nothing is not a viable option. This would also be inconsistent with the
Community policy on the environment, which urges a precautionary approach.

Integrated assessment modelling has shown that options (1) and (2) are the most
cost-effective ways of reducing exposure to PM2.5 and also provide the highest net
benefits. This has been shown for both the “European-wide” optimisation of health
impacts and optimisations using a “gap-closure” approach in each individual grid-

cell of the European modelling domain. The difference between (1) and (2) is in the
legal characteristic of the requirement to reduce the average urban background

Deutscher Bundestag – 16. Wahlperiode – 187 – Drucksache 16/1814

concentration. While in (1) the requirement would be legally binding in (2) it would
be attained where possible.

Options (1) and (2) is demonstrably more cost-effective than option (3). This is
because a stringent limit value has its greatest impact in locations where
concentrations are highest. However, these are not necessarily places where most
people are exposed to PM2.5. Due to the nature of the risk posed by PM2.5 (i.e. no
threshold for effects) it is more cost-effective to reduce concentrations where most
people are exposed. This approach would maximise health benefits for given
abatement expenditure. In addition, the uncertainties identified by the SCHER
associated with setting a stringent air quality limit value would argue against using
this approach at this stage.

One of the underlying principles of current Community policy on ambient air quality
is that of equity and guaranteeing a minimum standard of air quality for all EU
citizens. One way to achieve this is to implement either option (3), (4) or (5). The
main difference between option (3) and (4) would be in the severity of the chosen
level. In option (4) the cap would prevent only unduly high risks for the population.
Such a cap would be set at a relatively high level to reflect the underlying
uncertainties in the use of US risk estimates and to ensure that attainment remained
technically feasible. It would not be intended to provide high levels of protection that
are associated with the traditional limit value concept embodied in current ambient
air quality legislation. Given that the cap is meant to limit unduly high risks to the
population, it is appropriate that such a cap apply everywhere in the territory of the
Member States. Option (5) would be non-binding, would not necessarily oblige the
Member States to take the appropriate measures to reduce levels and so would not
guarantee minimum standards of air quality in practice.

The Commission considered whether there would be enough data to determine a
legally binding reduction requirement. On balance, it considered it prudent to opt for
a target value and establish in 2008-2010 the PM2.5 concentrations in urban
background stations. Based on these measurements, plus improved modelling data up
to 2020, the Commission will propose the legally binding obligation to reduce
average urban background concentrations.

Based on the above considerations, the Commission proposes a combination of
options (2) and (4) i.e. a relative reduction in annual average concentrations to be
attained by 2020 relative to 2010 and a general cap for PM2.5 annual average
concentrations to be attained in 2010. The current limit values for PM10 will remain
unchanged whereas the Stage II indicative limit values for 2010 will not be given
legal force.

7.3.1. Reducing average urban background concentration of PM2.5

The Commission proposes that Member States have first a concentration reduction
target, which would be later converted to a legal obligation – based on a review of
the Directive on Ambiant Air Quality and Cleaner Air for Europe – to reduce the
average urban PM2.5 background level. The Commission proposes to set this

requirement so as to be consistent within the range set between Scenarios A and B.

Drucksache 16/1814 – 188 – Deutscher Bundestag – 16. Wahlperiode

The Commission has analysed the projected urban background concentration of
PM2.5 in about 150 European cities. Table 27 shows the projected reductions in PM2.5
concentrations between 2010 and 2020 in the baseline and Scenarios A and B.

Table 27: Illustrative calculation of the reduction of annual average urban
background concentration of PM2.5 in Member States in 2020 compared with
the PM2.5 concentrations in 2010*)

Member State Baseline Scenario A Scenario B
Austria 6% 17% 20%
Belgium 7% 18% 20%
Cyprus**) .. .. ..
Czech Republic 10% 27% 30%
Denmark 4% 15% 19%
Estonia 7% 13% 15%
Finland 5% 8% 10%
France 7% 19% 22%
Germany 5% 21% 25%
Greece***) 5% 9% 10%
Hungary 8% 27% 30%
Ireland 8% 20% 23%
Italy 11% 20% 23%
Latvia 4% 11% 12%
Lithuania 6% 15% 17%
Luxembourg**) .. .. ..
Malta**) .. .. ..
Netherlands 4% 21% 25%
Poland 14% 29% 30%
Portugal 2% 8% 15%
Slovakia 7% 24% 26%
Slovenia 6% 18% 21%
Spain 5% 13% 15%
Sweden 5% 12% 14%
United
Kingdom 7% 24% 27%

EU-25 average 7% 19% 22%
Note: The index has been calculated assuming all Member States comply with the NECD in 2010. EU-
25 average is an arithmetic (unweighted) average.
*) Reduced concentrations due to the Directive to reduce sulphur content in marine fuels has not been
include. Thus, underestimates to some extent.
**) No data available
***) Large transboundary transport from Acceding Countries explains mainly why the reduction
percentage is relatively small.
Source: Calculations for the Commission by RAINS

In Scenario B the unweighted average concentration reduction would be 22% (the
population weithted average is somewhat higher, i.e. 25%) while the reduction in
Scenario A is a couple of percentage points lower. It can be seen that it would not be
cost-effective or equitable to propose that all cities in Member States be required to
reduce their concentrations by the same percentage. However, due to data

uncertainties, the Commission considers it prudent to wait first for good monitoring
data for 2008-2010 before establishing the exact reduction requirement. Therefore,

Deutscher Bundestag – 16. Wahlperiode – 189 – Drucksache 16/1814

the Commission proposes first to have only a concentration reduction target of 20%
for each Member State between 2010 and 2020.

It should be noted that Table 27 uses modelled concentrations of PM2.5. Current
modelling capabilities are restricted which means that certain contributions to
observed concentrations cannot be predicted. These include, for example, the
contribution derived from the reactions of organic compounds in the atmosphere and
natural contributions from windblown dust, sand and sea spray are not included in
the model. As such, an amount of approximately 5µg/m3 must be added to the
modelled results to reflect these additional contributions and the likely increased
concentrations in urban hotspots.

The RAINS model demonstrated a clear relationship between the expected reduction
in average PM2.5 concentrations in urban areas between 2010 and 2020 compared
with the estimated concentration in each city in 2010. Although there was significant
scatter in the data, a clear trend can be seen which showed that the more polluted the
city in 2010 the greater will be the expected reduction in PM2.5 concentrations during
the 2010-2020 period. Table 28 shows the percentage reductions in average
concentrations of PM2.5 between 2010 to 2020 for different levels of ambition for the
protection of health. This varies from 1.0% to 2.1% per 1µg/m3 of PM2.5 expected in
2010 for the baseline and the MTFR scenarios respectively.

Table 28: Slopes of the relationship between modelled concentrations in
European cities in 2010 and the percentage reduction in these concentrations
between 2010 and 2020

Baseline 2020
Scenario

A
Scenario

B
Scenario

C MTFR

Percentage reduction between
2010 and 2020 per 1µg/m3 of
PM2.5 expected in 2010

1.0% 1.6% 1.8% 1.9% 2.1%

Source: Calculations for the Commission by RAINS.

The percentage reductions in Table 28 are based upon modelling results for a limited
set of cities and are necessarily subject to uncertainties. These can be mitigated in
several ways when developing a proposal for legislation. Firstly, any obligation for
Member States to reduce PM2.5 concentrations should apply to concentrations
measured in urban areas averaged over real measurements undertaken in cities
throughout their territory. Hence the national average concentration measured in
2010 will not be unduly influenced by elevated concentrations in particular cities.
Secondly, Member States will have flexibility to reduce concentrations where it is
most cost effective as there would be no strict requirement to reduce by the same
amount in each and every city. Thirdly, one could cap the maximum reduction that
any particular Member State will have to undertake. Finally, one can recognise that
where air quality is already good it is unfair to require further improvements. These
principles need to be as embodied in the relationship to be used to determine each
Member State’s concentration reduction target for urban PM2.5 concentrations.
Drucksache 16/1814 – 190 – Deutscher Bundestag – 16. Wahlperiode

Specifically, the Commission proposes that the following elements comprise the
approach:

1. Each Member State will be obliged to reduce the average urban background
concentration of PM2.5 in their territory by a specific percentage between
2010 and 2020 measured in the baseline concentration to be established for
2010.

2. This requirement would not be applied for very low concentrations. A lower
threshold is proposed to be at 7 µg/m3. Below this there is no obligation to
reduce average levels further. This would prevent “cleaning of clean air”;

3. It could be possible to introduce also an upper threshold above which there is
no further increase in the percentage reduction.

Therefore, the Commission proposes a two-stage approach to establish the
requirement to reduce annual average urban background concentration of
PM2.5 between 2010 and 2020. Firstly, each Member State would have a
concentration reduction target of 20% for PM2.5 between 2010 and 2020.
Secondly, once the monitoring data of PM2.5 for 2008-2010 are available, the
concentration reduction target would be differentiated by Member State and
made legally binding for the period between 2010 and 2020.

7.3.2. Establishing a concentration cap for PM2.5

In order to establish a concentration cap the Commission used the following
methodology: Based upon existing measurements, one can extrapolate or estimate
the concentration of PM2.5 for a given level of PM10. Given that the air quality limit
value for PM10 entered into force on 1 January 2005 the Commission proposes to set
the cap at a level that is no more stringent that the equivalent limit value for PM10.
The current air quality limit value for PM10 is 40 µg/m3 as an annual average. This
would be equivalent to between 24 and 28 µg/m3 for PM2.5. The current daily (24-
hour) air quality limit value for PM10 is 50 µg/m3 and it cannot be exceeded by more
than 35 days. It is estimated that this is a slightly more stringent requirement than the
annual limit value, i.e. below 24 to 28 µg/m3 for PM2.5.

In sum, given the current limit values for PM10 and the view that the cap for PM2.5
should not itself set a more stringent requirement to Member States, the
Commission proposes that the concentration cap for PM2.5 in 2010 be 25 µg/m3
expressed as annual average.

7.4. Costs and benefits of the proposal for regulating PM2.5

To calculate the costs of this strategic approach requires a subset of the costs of
Scenarios A and B of the Strategy. It is further assumed that by 2010 all Member
States will comply with the annual air quality limit values for PM10. As the PM2.5 cap
for 2010 has been set at a level equivalent to the current PM10 annul limit value, this
implies that the PM2.5 limit value will also be attained with no additional costs. If for
some reason a Member State is not able to comply with the limit value, but has made

every effort to do so, the proposed “safety valve” (i.e. Article 20 of the proposed

Deutscher Bundestag – 16. Wahlperiode – 191 – Drucksache 16/1814

“Directive for Ambient Air Quality and Cleaner Air for Europe”) would mean, that
for the purposes of compliance costs in 2015 or 2020, no additional cost is estimated.

Given the assumptions outlined above, Table 29 shows the annual compliance costs
for PM2.5 in 2020. The annual costs of the proposed new approach to regulate PM2.5
are estimated to be €2.6 billion lower in 2020 than the total compliance costs of
Scenario B of the Strategy (see Table 11 in Chapter 5).

Table 29: Illustrative calculation of compliance costs to reduce the average
urban background concentration of PM2.5 by an average of 25% (Scenario B) or
20% (Scenario A) in the EU-25 between 2010 and 2020 (million euros)

Cost of
Scenario B
with PM2.5

only

Cost of
Scenario A
with PM2.5

only

Incremental
cost from

Scenario A to
B

Austria 144.3 66.5 77.8
Belgium 460.6 178 282.6
Cyprus 3.4 3.4 0.0
Czech Republic 169.6 104.4 65.2
Denmark 69.5 28.5 41.0
Estonia 8.8 7.2 1.6
Finland 28.1 22.9 5.2
France 1588.7 874.4 714.3
Germany 1821.5 986.3 835.2
Greece 49.3 42.5 6.8
Hungary 179.5 118.1 61.4
Ireland 44.6 37.5 7.1
Italy 772.8 534.1 238.7
Latvia 11.5 10.3 1.2
Lithuania 39.4 18.1 21.3
Luxembourg 21.5 16.7 4.8
Malta 1.5 1.3 0.2
Netherlands 417.6 200.9 216.7
Poland 603.5 560.8 42.7
Portugal 164.5 136.9 27.6
Slovakia 74.6 51.1 23.5
Slovenia 35.8 25 10.8
Spain 506.5 351.1 155.4
Sweden 87.8 25.7 62.1
UK 774.7 572.7 202.0
EU-25 8079.6 4974.4 3105.2

Source: RAINS

Cost of Scenario A with PM2.5 only would be almost €1 billion or almost 20% lower
than implementing Scenario A with all measures. The compliance cost of reaching
this reduction requirement is likely to be between €5 and €8 billion per annum.

Table 30 gives the benefits of the reduction of PM2.5 concentration in Member States
assuming the reductions in concentrations to be compatible with Scenario B. Table
31 gives the cost/benefit ratios of Tables 29 and 30. Overall the health benefits of

reaching the average concentration reduction by 25% in the EU are five times higher
than costs when the lowest benefits are used as the basis for estimation. If the highest

Drucksache 16/1814 – 192 – Deutscher Bundestag – 16. Wahlperiode

values were used the benefits would outweigh the costs 17 times. It is also important
to see whether moving form Scenario A to Scenario B would bring additional
benefits. This is also the case as the benefits of this are still at least 2.5 times higher
than costs. However, in two Member States116 in this incremental analysis the
benefits are projected to be slightly lower than costs. However, overall, the benefits
are still more than two times higher than costs for these Member States.

Table 30: Illustrative calculation of benefits from increased life expectancy and
health of the reduced average urban background concentrations of PM2.5 by an
average of 25% in the EU-25 between 2010 and 2020 (based on Scenario B)

VOLY (median) VSL (median) VOLY (mean) VSL (mean)

Benefits Incremental benefits Benefits
Incremental

benefits Benefits
Incremental

benefits Benefits
Incremental

benefits
Austria 730 145 1237 246 1366 272 2313 460
Belgium 1525 281 2581 475 2871 529 4843 892
Cyprus*) 6 1 8 2 11 2 15 3
Czech Rep. 1227 188 2185 336 2292 352 4105 630
Denmark 370 87 672 157 699 163 1269 297
Estonia 31 6 60 11 57 11 114 21
Finland 50 12 86 21 94 23 162 40
France 6435 1361 10288 2176 12148 2570 19219 4065
Germany 10719 2097 19703 3854 20166 3944 37232 7283
Greece 311 44 611 87 583 83 1158 165
Hungary 1452 163 2867 321 2711 304 5435 609
Ireland 213 43 300 61 400 81 551 112
Italy 4738 816 9393 1619 8889 1532 17844 3075
Latvia 108 18 155 27 200 34 285 49
Lithuania 112 15 278 37 209 28 536 71
Luxembourg 84 17 112 23 158 32 203 42
Malta 13 2 21 3 24 4 39 6
Netherlands 2714 525 4401 851 5114 989 8225 1591
Poland 4039 325 6816 548 7519 605 12710 1022
Portugal 484 229 885 419 906 429 1669 789
Slovakia 699 77 1154 127 1301 143 2147 236
Slovenia 198 39 358 70 369 72 673 132
Spain 1739 424 3099 756 3247 792 5818 1419
Sweden 247 56 421 96 465 106 791 180
UK 6442 1071 9894 1646 12099 2012 18355 3053
EU-25 44685 8044 77586 13968 83902 15113 145712 26242

Source: CAFE Cost-Benefit Analysis. Note: Incremental benefit means the benefits that accrue when changing from
Scenario A to B. VOLY/VSL median and mean are explained in Chapter 2

*) The negligible incremental cost data for Cyprus is probably inaccurate because of modelling uncertainties

116 These were Lithuania and Sweden.

Deutscher Bundestag – 16. Wahlperiode – 193 – Drucksache 16/1814

Table 31: Illustrative calculation of cost/benefit ratios from increased life
expectancy and health of the reduced average urban background concentration
of PM2.5 by an average of 25% in the EU-25 between 2010 and 2020.

VOLY (median) VSL (median) VOLY (mean) VSL (mean)

Benefits Incremental benefits Benefits
Incremental

benefits Benefits
Incremental

benefits Benefits
Incremental

benefits

Costs Incremental costs Costs
Incremental

costs Costs
Incremental

costs Costs
Incremental

costs
Austria 5.1 1.9 8.6 3.2 9.5 3.5 16.0 5.9
Belgium 3.3 1.0 5.6 1.7 6.2 1.9 10.5 3.2
Cyprus 1.7 n.a. 2.3 n.a. 3.2 n.a. 4.4 n.a.
Czech Rep. 7.2 2.9 12.9 5.2 13.5 5.4 24.2 9.7
Denmark 5.3 2.1 9.7 3.8 10.1 4.0 18.3 7.2
Estonia 3.5 3.7 6.9 6.7 6.5 6.7 13.0 12.8
Finland 1.8 2.3 3.1 4.0 3.3 4.4 5.8 7.7
France 4.1 1.9 6.5 3.0 7.6 3.6 12.1 5.7
Germany 5.9 2.5 10.8 4.6 11.1 4.7 20.4 8.7
Greece 6.3 6.5 12.4 12.8 11.8 12.2 23.5 24.3
Hungary 8.1 2.7 16.0 5.2 15.1 4.9 30.3 9.9
Ireland 4.8 6.1 6.7 8.6 9.0 11.5 12.4 15.8
Italy 6.1 3.4 12.2 6.8 11.5 6.4 23.1 12.9
Latvia 9.4 15.1 13.4 22.7 17.3 28.6 24.7 41.2
Lithuania 2.8 0.7 7.1 1.7 5.3 1.3 13.6 3.3
Luxembourg 3.9 3.6 5.2 4.8 7.3 6.7 9.4 8.8
Malta 8.7 10.5 14.1 15.8 16.1 21.1 26.2 31.6
Netherlands 6.5 2.4 10.5 3.9 12.2 4.6 19.7 7.3
Poland 6.7 7.6 11.3 12.8 12.5 14.2 21.1 23.9
Portugal 2.9 8.3 5.4 15.2 5.5 15.6 10.1 28.6
Slovakia 9.4 3.3 15.5 5.4 17.4 6.1 28.8 10.0
Slovenia 5.5 3.6 10.0 6.5 10.3 6.7 18.8 12.3
Spain 3.4 2.7 6.1 4.9 6.4 5.1 11.5 9.1
Sweden 2.8 0.9 4.8 1.5 5.3 1.7 9.0 2.9
UK 8.3 5.3 12.8 8.1 15.6 10.0 23.7 15.1
EU-25 5.5 2.6 9.6 4.5 10.4 4.9 18.0 8.5

Source: CAFE Cost-Benefit Analysis Note: Incremental benefit means the benefits that accrue when
changing from Scenario A to B. VOLY/VSL median and mean are explained in chapter 2.

The social and other economic implications of the proposed cap and reduction in
urban background concentration of PM2.5 are very similar to those presented in
Chapter 5. As the annual compliance cost for PM2.5 is €2.6 billion (i.e. about 25%)
less than the total compliance cost of the Strategy, the general equilibrium effects
were modelled117 only for PM2.5 (Table 32).
117 Analysis of macroeconomic and competitiveness effects with GEM-E3 of CAFE Scenarios (AEAT,
August, 2005)

Drucksache 16/1814 – 194 – Deutscher Bundestag – 16. Wahlperiode

Table 32: Illustrative calculation of macroeconomic impacts of Scenarios A and
B – PM2.5 only compared to baseline in 2020

Macroeconomic Aggregates
EU-25

Scenario A for
PM2.5

Scenario B for
PM2.5

Gross Domestic Product -0.03% -0.06%
Employment 0.00% 0.00%
Private Consumption -0.06% -0.11%
Investment -0.01% -0.01%
Final Energy Consumption -0.11% -0.17%
Exports to RW 0.00% 0.02%
Imports 0.04% 0.09%
Real Wage Rate -0.04% -0.08%
Relative Consumer Price 0.00% 0.01%
Real Interest Rate 0.01% 0.02%
Terms of Trade 0.03% 0.05%

Source: GEM-E3

In summary, the Commission proposes a cap of 25 micrograms per cubic metre to be
attained by 2010, and proposes that a concentration reduction target of 20% between
2010 and 2020, which would be converted – based on a review of the Directive on
Ambiant Air Quality and Cleaner Air for Europe – to a legally binding reduction
requirement once the monitoring data are available. The benefits of the proposal are
estimated to be between €37 billion and €145 billion per annum in 2020. These are
between 6 and 18 times higher than the estimated costs ranging between €5 and €8
billion per annum. (Table 33).

Table 33: Illustrative summary of the annual costs and benefits from increased
life expectancy and health of the reduced average urban background
concentration of PM2.5 by 20% (Scenario A) of PM2.5 and by 25% (Scenario B)
in the EU-25 between 2010 and 2020 (billions of euros)

Total costs and benefits

Scenario A Scenario B

Incremental costs
and benefits from
Scenario A to B

Cost (€bn) 5.0 8.1 3.1
Benefits (€bn)
VOLY (median) 36.7 44.7 8.0
VSL (median) 63.6 77.6 14.0
VOLY (mean) 68.8 83.9 15.1
VSL (mean) 119.5 145.7 26.2
Benefit/Cost ratio
VOLY (median) 6.3 5.5 2.6
VSL (median) 11.7 9.6 4.5
VOLY (mean) 12.8 10.4 4.9
VSL (mean) 22.9 18.0 8.5

This conclusion is further strengthened by the fact that the incremental benefits
between Scenarios A and B are between 3 and 9 times higher than the incremental
costs. In other words, the impact of the proposed manner to regulate PM2.5 on human

health is clearly beneficial.

Deutscher Bundestag – 16. Wahlperiode – 195 – Drucksache 16/1814

8. MONITORING AND EVALUATION

8.1. Evaluation and review of policies

Given the expected advances in our understanding of the adverse health and
environmental impacts likely in the future, it is appropriate that the targets and
policies described in this strategy be reviewed on an ongoing basis. Such reviews
should also take account of advances in our knowledge of pollution abatement costs
and assess retrospectively the effectiveness of existing measures. This Strategy will
be reviewed in five year policy cycles and will feed into the final evaluation of the
EAP. Ongoing assessment of policies will also continue on the basis of existing
indicators and reported information. In the coming years, however, more work will
be required to inform such a review.

The EEA and Eurostat have developed indicators to monitor the impacts of air
emissions on human health and the environment. Long-term monitoring of
environmental effects of air pollution will be undertaken in association with the
UNECE Convention on Long-range Transboundary Air Pollution. Activities under
CAFE will link with the established structures of the effects-oriented activities under
the Convention in order to assist and support cooperation in monitoring and
assessment activities. Monitoring, modelling, assessment and mapping will follow
agreed methodologies and focus on status and trends in: forests, including soils and
ground vegetation; (semi-)natural ecosystems and protected areas;118 agricultural
receptors; aquatic ecosystems including coastal and marine waters;119 materials
including cultural heritage. Eutrophication, acidification and ozone effects and their
trends will be monitored; related biodiversity and effects of climate change will
receive specific attention. The results of monitoring together with detailed reports on
emissions and air quality from the Member States will provide the basis for assessing
the effectiveness of Community and Member States´ policies.

To carry out the review effectively, the Commission needs to ensure that the
scientific and economic knowledge is systematically collected, updated and analysed
by the modelling tools that have been developed during the CAFE programme. Thus,
it will make specific call for proposals in the Preparatory Action of the LIFE
programme for this task.

8.2. Consultative arrangements

Following adoption of the Strategy, the next major task will be revision of the
National Emissions Ceilings Directive and the ongoing implementation of air quality
legislation. The institutional framework will need to be adapted accordingly.

The CAFE Steering Group, or a similar group, will continue to be the main forum for
future stakeholder participation and consultation. In addition, a Working Group on
“National Emission Ceilings and Policy Instruments” was created in May 2005 to
help out with the technical work on revising the National Emissions Ceilings

118 Protected areas are not currently separately assessed under the Convention
119 Coastal and marine waters are not currently monitored under the Convention

Drucksache 16/1814 – 196 – Deutscher Bundestag – 16. Wahlperiode

Directive. AQUILA120 network of national reference laboratories, hosted by JRC,
already now monitors implementation of the air quality directives with regard to
quality of assessments of ambient air quality and assists the Commission in efforts of
further harmonisation and better comparability of data between the Member States.
Greater use is also likely to be made of the Regulatory Committee on air pollution
particularly for monitoring and reporting on implementation of existing legislation.
Data Exchange Group has been created in 2004, consisting of air quality data
handling experts from the Member States and the EEA, which will assist in drafting
of the Implementing provisions on reporting to be adopted through Comitology. The
committee will also be used to coordinate Community views on technical issues,
which may arise in international fora.

8.3. Research needs including financial implications

Community air pollution policy is built on robust scientific and technical knowledge
and the first review of policies about five years will require new scientific and
technological information on:

– Emission sources, atmospheric chemistry and pollutant dispersion, particularly
on the hemispheric scale, and a better understanding of the origin of air
pollutants to support policy development

– The effects of air pollution on health and the environment including the risks of
nutrient nitrogen and the recovery of ecosystems

– The costs, effectiveness and benefits of measures actually deployed.

In addition, the structural and societal changes occurring in Europe after the
accession of new Member States will need to be addressed, including changes in
trade and industry and the enlarged trans-European networks.

8.3.1. Emission sources, atmospheric chemistry and pollutant dispersion

The emissions of air pollutants depend on both the activities in the different sectors
of society and the emission control technologies applied. Emissions may change over
time, particularly as a result of global changes in trade and industry. To some extent
these changes are covered by the present analysis and policy development, but there
is a need to improve understanding. Research needs should be geared towards better
integration of multi-scale processes from the global scale to the local scale. Such
integrated approaches should be included into the framework of risk analysis and risk
management, and capable of addressing changes in important sectors like transport,
trade, energy and agriculture. Methods to account for emerging technologies also
need to be developed.

Looking at global scale, it needs to be recognised that air pollution is emitted in
different parts of the world. As an example, a global atmospheric map of nitrogen
dioxide pollution has been produced by the European European Space Agency
(ESA), based on the recent observations of Envisat, the world's largest satellite for

120 http://ies.jrc.cec.eu.int/Units/eh/Projects/Aquila/

Deutscher Bundestag – 16. Wahlperiode – 197 – Drucksache 16/1814

environmental monitoring (Figure 25). It shows there are three main sources of NO2
emissions in the Northern hemisphere: Europe, Northern America and Eastern Asia.

Figure 25: Global atmospheric map of nitrogen dioxide pollution, 2003-2004

Source: ESA (http://www.esa.int/esaEO/SEM340NKPZD_index_0.html)

There is an urgent need to better understand how the changing patterns of emissions
over the Northern hemisphere impact on air pollution over Europe through the
transcontinental transport of air pollutants such as particulate matter, ozone,
persistent organic pollutants, and mercury. The UNECE has recently set up a Task
Force on hemispheric transport of air pollution, jointly chaired by the Commission
and the US EPA. One objective of the Task Force is to assess scientific knowledge
on the hemispheric transport of particulate matter of natural and anthropogenic
origin, and the chemical and physical characteristics of these emissions.

Long-term monitoring of environmental effects of air pollution will be undertaken in
association with the UNECE Convention on Long-range Transboundary Air
Pollution. Activities will link to the established structures of the effects-oriented
activities under the Convention in order to assist and support cooperation in
monitoring and assessment activities. Monitoring, modelling, assessment and
mapping will follow agreed methodologies and focus on status and trends in: forests
including soils and ground vegetation; (semi-)natural ecosystems and protected
areas121; agricultural receptors; aquatic ecosystems including coastal and marine
waters122; materials including cultural heritage. Eutrophication, acidification and
ozone effects and their trends will be monitored; related biodiversity and effects of
climate change will receive specific attention. The results of monitoring together
with detailed reports on emissions and air quality from the Member States will
provide the basis for assessing the effectiveness of Community and Member States´
policies. The monitoring activities and the related scientific work will continue to be
reviewed regularly.
121 Protected areas are not currently separately assessed under the Convention
122 Coastal and marine waters are not currently monitored under the Convention

Drucksache 16/1814 – 198 – Deutscher Bundestag – 16. Wahlperiode

Other research priorities include

– the formation of secondary organic aerosols and how different emission
sources contribute to the particulate mass and appropriate EU-wide monitoring
(see below)

– the links between air pollution and climate change, and climate impact on air
pollution.

– improved methods for assessing air pollution, at local and regional level,
including the integrated use of monitoring data from the ground and space
instruments and assessment models.

8.3.2. Effects of air pollution on health and the environment

In order to develop and refine strategies to avoid health impact we need new research
or updated information on:

– how the changing sources and composition of air pollution in Europe impact on
the human population; health-related studies are needed on exposure patterns
and the effects of air pollution abatement and policies (ex post evaluations).

– the exposure routes, sensitivity and vulnerability of the population and
different population groups, which may also change with time.

– the health effects of long-term exposure to ozone, nitrogen oxides and
particulate matter (and their different size fractions) relevant for present and
future air pollution. For airborne particles, we are specifically concerned by
fuel-source specific risk. Further research is also needed to understand the
specific composition effects of particulate matter (e.g. secondary organic and
inorganic aerosols, metals). The research would include both air pollution
epidemiology and toxicology.

– Specifically it is necessary to start long-term studies on the impact of air
pollution on different European population groups including children, and to
follow these groups (cohort) over a long period of time. This is also very
closely linked with the Environment and Health Strategy of the Commission (a
joint initiative by DG ENV, DG SANCO and DG RTD).

– The environmental effects of air pollution are considerable, through
acidification and eutrophication of waters and soils and high concentrations of
ground-level ozone. Priority areas for further research would include improved
methods to quantify ozone damage to crops and other vegetation and improved
understanding of the dynamic effects of ecosystem recovery (including
biodiversity) from pollution damage. Nitrogen in the ecosystems and as a
pollutant plays a key role in many environmental processes, but better
understanding is needed to address the nitrogen issue in a more integrated way.

Deutscher Bundestag – 16. Wahlperiode – 199 – Drucksache 16/1814

8.3.3. Costs, effectiveness and benefits of measures

Present pollution policy is a main driver for further development of abatement
technologies for those sectors and sources that contribute such as energy, transport,
industry and agriculture. This is a continued effort for research and technology
development, but is also closely linked with economic aspects. It is therefore also
important to give support for the introduction of new technologies (demonstration
programmes) and abatement techniques for bench and feasibility testing, pilot scale
and early full-scale introduction.

– For new vehicles and other mobile sources, future on-board diagnostics and
emissions monitoring equipment would be required to assess and further
control emissions. As an example, the ERTRAC network investigates the
medium term research needs in the transport sector.

– Other combustion sources also give rise to high emissions of nitrogen oxides
and particulate matter and cost-effective technologies are needed to reduce
these emissions. A major research effort is needed to develop integrated
approaches to facilitate the development and implementation of the effective
emission abatement strategies that exist in EU Member States. This requires
extensive knowledge of the origins and interplay of all major pollution sources,
taking into account the associated costs and benefits and other possible factors
arising from the adoption of these abatement strategies.

Risk assessment, risk communication and risk management require comprehensive
tools for integrated assessment of air pollution and policy options and these need to
be further developed. These tools need to integrate regional and local urban
problems, and also the influence between air pollution policy and other sector
policies. They should include the use of technical and non-technical measures and
tools to evaluate various policy instruments, including market-based instruments,
legislation and voluntary agreement.

Integrated assessment tools should be further developed for assessing the
effectiveness of measures, and the positive and negative factors for the different
sectors of society. They should also be able to assess more in depth the effects of
sustainable development of all three aspects (economic, social and environmental).
Ex ante evaluations also need to be more systematically compared with ex post
evaluations of policy effectiveness, both for the costs of measures and the assessment
of benefits.

Risk communication would include the development of indicators to be used to
communicate with non-experts. The indicators should be easy to understand and
could be related to long-term and interim objectives. These indicators could be based
on monitoring of air pollution and its effects (environment and health monitoring)
and complemented by other assessment techniques such as modelling. (One
important step in this direction is the development of the health-relevant Strategic
Development Indicator.) Also the development of EU-wide air quality indices could
be envisaged.

Drucksache 16/1814 – 200 – Deutscher Bundestag – 16. Wahlperiode

8.3.4. Financial implications

The research community should take advantage of EU RTD funding opportunities
and the capabilities of the Joint Research Centre of the European Commission to
address these issues with the full support of Member States.

It is vital to address the gaps in knowledge on the nature and impacts of particulate
matter. Additional efforts are therefore required to obtain enhanced chemical,
temporal and size-resolved measurement data, not captured by regulatory monitoring
throughout the EU. Research infrastructure which will provide such data is often
referred to as ‘superstations’. An integrated European-wide research project will,
through an elaborate assessment, combine the data from ‘superstations’ with the data
from surrounding ‘satellite’ stations (regular network stations, enhanced for the
duration of the contract), additional measurement campaigns, detailed emission
inventories and a comprehensive monitoring of the impacts on the human health. The
Commission estimates that the annualized investment and running costs of this
research network of ‘superstations’ would be about five times higher than the normal
background monitoring. Thus, the annualised costs of ‘superstations’ are estimated
at €5 million. An important share of these costs is due to the investment on research
infrastructure. This needs would be covered by the budget already allocated to this
purpose in the 7th Research Framework Programme as proposed by the Commission
for the financial perspectives 2007-2013.

Deutscher Bundestag – 16. Wahlperiode – 201 – Drucksache 16/1814

9. STAKEHOLDER AND PUBLIC CONSULTATION

9.1. Public consultation

According to Eurobarometer – a survey based on a random sample in each Member
State – EU citizens have rated air pollution as one of the five environmental
problems of most concern in 2002 and 2004. Overall almost 50% of Europeans are
“very worried” about air pollution (see Figure 26), while there are differences
between Member States. It is striking that the share of “very worried” about air
pollution was higher in the new Member States than in the EU-15 in 2004.

Figure 26: Percentage of the population “very worried” by air pollution in 2002
and 2004 in EU-25

0 10 20 30 40 50 60 70 80

Germany
Austria
Greece

Denmark
Ireland

Italy
Luxembourg

Spain
Belgium

France
Finland
Cyprus

Czech Republic
Estonia
the UK

the Netherlands
Poland
Latvia

Sweden
Slovakia
Slovenia
Portugal
Hungary

Malta
Lithuania

New Member States
EU15

2004
2002

Source: Eurobarometer

Drucksache 16/1814 – 202 – Deutscher Bundestag – 16. Wahlperiode

The Commission launched a public consultation on air pollution in December 2004
and January 2005. This consultation should be seen against the background of
general public concern about air pollution in Europe. The consultation was held in
the form of a questionnaire, available on the internet to anyone to fill in. In view of
the setup, the results should not be seen as the opinions of the EU population at large,
but as a representation of the views of those interested in air pollution, aware of the
consultation and able to fill in the questionnaire. The response - 11587 questionnaires
filled in - was larger than received in any previous consultation of this kind.

The response was far from evenly distributed over the countries; half was from
Portugal. Most respondents (89%) were ‘individuals’, 6% labelled themselves as
‘experts’ (from research bodies or public authorities), 2% represented business and
2% were from NGOs. There were differences between categories, with
representatives of NGOs tending to be somewhat more concerned and in favour of
ambitious reduction measures than individuals, and representatives from business
even less so. Experts from research and public authorities were on average somewhat
less concerned than other individuals.

Several conclusions relevant for this Strategy were drawn from the consultation.
There are good reasons for the Commission to continue its policy of pushing for air
quality information to be available to the public. Very many respondents were
concerned about air quality, particularly about the impacts on environment and
health. They attach high priority to improving air quality and called for Scenario C.
The international and European levels were seen as the most appropriate competence
level for taking action. Industrial production and traffic were given as the main
targets for measures, and respondents were also prepared to take individual action
themselves to improve air quality.

These results were taken into account in the Strategy when defining the ambition
level, focusing on health and environment objectives and identifying the possible and
acceptable measures to be taken to reduce air pollution. Measures to simplify
legislation and to improve public information will also meet the concerns raised in
the public consultation.

9.2. Stakeholder consultation

A Clean Air for Europe (CAFE) Steering Group123 composed of representatives
of the Member States, industry, and non-governmental and some international
organisations was set up to advise the Commission on the environmental ambition
concerning the Strategy. It met 14 times over the time frame of the preparation of the
Strategy.

A Working Group on Target-Setting and Policy Assessment124 (WG TSPA),
representing a mosaic of European stakeholders and invited experts, was set up with
the purpose of assisting the Commission in the development of air quality related
targets for the protection of human health and the environment, and giving advice on
issues related to policies and measures and their effect on air quality and other

123 http://europa.eu.int/comm/environment/air/cafe/meetings/steering_group.htm
124 http://europa.eu.int/comm/environment/air/cafe/working_groups/wg_target_setting.htm

Deutscher Bundestag – 16. Wahlperiode – 203 – Drucksache 16/1814

aspects of economic, societal and environmental development. Its main task was to
assist in the initial setting of policy-relevant air quality indicators for the Baseline
scenarios and initial targets for Integrated Assessment Modelling (IAM), to support
the qualitative and quantitative assessment of the results of IAM, including Cost-
Benefit Analysis, to make recommendations for alternative model runs (“scenarios”)
for the IAM, to assist in the analysis of the policies and measures related to the
development of the Thematic Strategy and to recommend the most appropriate
options for the CAFE work programme, and the final report of the CAFE
programme. The WG TSPA met 12 times in all during preparation of the Thematic
Strategy on Air Pollution.

Since the issue of particulate matter was identified at the onset of the CAFE
programme a Working Group on Particulate Matter125 (WG on PM) was set up
with national experts. The main objective of the WG on PM was to give support to
the Commission in its review of the Air Quality Directive 1999/30/EC relating to
airborne PM and its preparation of the Thematic Strategy on Air Pollution. With
respect to the Directive, the main tasks were to assess the air quality situation with
regard to the PM limit values and to review the Position Paper on PM published in
1997 with regard to information obtained since, and also to collect together
information on predictive studies on the attainability of the limit values, considering
contributions from long-range transport and local sources. With the aim of
supporting preparation of the Thematic Strategy, the WG on PM had the task of
considering the WHO work on health effects of PM and to give recommendations
for concrete targets for integrated assessment. A further task was to review the
results of the integrated assessment modelling work on PM, which took place in a
joint meeting between the WG TSPA and experts from the WG on PM. In all the
WG on PM had seven meetings with the full group. Most importantly it reviewed the
Position paper on PM from 1997, and undertook far-reaching consultation on its
content with experts and stakeholders, inter alia through a consultation workshop in
Stockholm in 20 and 21 of October 2003. The final report is available on the web.126

The Commission has set up a Working Group on Implementation127 (WGI) with
experts from Member States and some other stakeholders. The main objective of the
group is to assist in collecting experiences of implementation of air quality
legislation in the Member States, to make assessments of the implementation and
effectiveness of air quality legislation and to assist the Commission in preparing
amendments to directives. The WGI has, inter alia, the tasks of:

– identifying and listing problems in implementing the legislation in Member
States;

– developing, as appropriate, specific guidance to support Member States in
implementing the legislation;

125 http://europa.eu.int/comm/environment/air/cafe/working_groups/wg_particulate_matter.htm
126 http://europa.eu.int/comm/environment/air/cafe/pdf/working_groups/2nd_position_paper_pm.pdf
127 http://europa.eu.int/comm/environment/air/cafe/working_groups/wg_implementation.htm

Drucksache 16/1814 – 204 – Deutscher Bundestag – 16. Wahlperiode

– investigating possibilities of streamlining and harmonising reporting
requirements within the air quality frame work directives, its daughter
directives and the directive on national emission ceilings;

– examining particular problems in Accession Candidate Countries in
implementing the aquis.

The WGI has also organised workshops on implementation, "Meeting the Limit
Values", held in Bruges on 17 and 18 September 2001. The WGI will also continue
its work on the follow-up to the Thematic Strategy on Air Pollution, but with a
revised mandate.

The Commission has also organised a large number of workshops and other meetings
to consult with stakeholders, such as Member States experts and NGOs. The
Commission has actively participated in meetings organised by others, giving
presentations of policy relevance and seeking various stakeholders’ views on key
issues. In many cases too our consultants and Member State representatives have
presented key issues to their stakeholders.

9.3. Consultation within the Commission

In addition to DG ENV consultations with European stakeholders internal
consultations with other Commission departments have been a regular feature of the
preparation of the Thematic Strategy. Throughout the CAFE programme 10 Inter-
Service meetings were held. Five of them were informal meetings, between 2001 and
2003, and the other five were formal during 2004-2005, and focused on the impact
assessment of the Thematic Strategy.

Deutscher Bundestag – 16. Wahlperiode – 205 – Drucksache 16/1814

10. COMMISSION PROPOSAL AND GROUNDS

10.1. Selection of the interim objectives for the Thematic Strategy up to 2020

The previous sections analysed in detail the environmental and health impacts of
three possible sets of interim objectives. They also tested the robustness and analysed
the impact of scenarios in wider contexts, whether economic (e.g. competitiveness
and sectoral implications) social (e.g. employment and social inclusion) or
environmental (e.g. climate change, water and soil policies). Overall, the foregoing
analysis has demonstrated that an interim objective beyond Scenario C would be
justified only if the higher end of the statistical values for life years lost were used in
the benefit assessment. Given the uncertainties concerning the benefit estimates, it
would be prudent to conclude that the case for selecting an interim objective beyond
Scenario C would be rather weak.

It was also demonstrated that while costs would increase quite rapidly from Scenario
A to Scenario C, the environmental and health benefits would increase relatively
modestly. The impact on competitiveness – estimated by a general equilibrium
model – would be generally similar, albeit somewhat lower than the direct sectoral
costs estimated by the RAINS integrated assessment model. Also the overall
macroeconomic impact was shown to be fairly small. For instance, the impact of
Scenario B on gross domestic product was projected to be 0.08% in 2020. It should
be noted that between 2000 and 2020 gross domestic product is projected to increase
by over 50%.

Another point to note is that the analysis assumed that the rest of the world would not
reduce air pollution while the EU implements the Thematic Strategy on Air
Pollution. However, key competing economies (e.g. the USA128 and China) are
making efforts similar to the action proposed in the Strategy. In other words, as
countries outside the EU are also reducing their air pollution, the impact of air
pollution policies in the EU on competitiveness will be mitigated. Consequently, the
costs – in terms of competitiveness – shown in this impact assessment are
overestimated because the impact of the air pollution abatement policies of other
economies in the world has been excluded from the analysis.

It was also shown that the overall impact on employment was negligible. In some
sectors employment would increase while in others it would decrease. The sectors
where employment seems likely to increase would be those where the educational
requirements are relatively high. This would be compatible with the Lisbon strategy
of increasing competitiveness in the EU by raising the skill levels of the labour force.

To sum up, all three scenarios were shown to pass the cost-benefit test and their
wider economic and social impacts were demonstrated to be compatible with the
EU’s Lisbon and sustainable development strategies. Consequently, all that remains
to be done is to select the interim objectives for the Strategy up to 2020.
128
For instance, the recently announced Clean Air Interstate Rule programme in the USA will induce an

annual abatement cost to the power generation sector of $5 billion.

Drucksache 16/1814 – 206 – Deutscher Bundestag – 16. Wahlperiode

Scenario C has the advantage of delivering high environmental and health benefits.
However, at the same time the annual costs of Scenario C are about €4 billion higher
than in Scenario B. A cautious marginal analysis approach, taking into account the
uncertainties, shows that the optimum level of ambition for PM health benefits is
between B and C. Regarding the other targets for ecosystems and ozone for which a
monetary valuation is not fully available, additional ecosystem benefits between
Scenarios A and B are relatively small compared with the increase in costs.
Therefore, it seems justified to select a final scenario which represents a combination
of Scenarios A and B, i.e. a level of ambition for human health protection from PM
close to Scenario B with a level of protection for ecosystems based on Scenario A.
This delivers the lowest levels of air pollution that can be justified in terms of
benefits and costs whilst attempting to prevent undue risks for the population. This
strategy would yield monetised benefits for human health and crop damage of €42.7
billion per annum with associated costs of € 7.1 billion per annum. Table 34
summarises the alternative ambition levels and shows the chosen combination
labeled as “Strategy”.

Table 34: Alternative environmental ambition levels up to 2020
Baseline Policy Scenarios

2000 2020 A B C Strategy
SO2 -68% -80% -82% -83% -82%
NOx -49% -60% -63% -65% -60%
VOC -45% -50% -54% -55% -51%
NH3 -4% -25% -32% -35% -27%

Emissions
(relative to year
2000)

PM2.5 -45% -57% -59% -61% -59%
Impacts of particulate matter on health

Premature mortalities 348,000 272,000 218,000 206,000 200,000 210,460
Months of life expectancy lost 8.1 5.5 4.4 4.1 4.0 4.2
Total PM Damage costs to human
health per annum €268bn €184bn €147bn €139bn €136bn €142bn

Cost per annum (Particulate Matter
& human health) - - + €5.0 + €8.1bn +€11.4 +€6.6bn

Health Benefits (PM) per annum - - + €37bn + €45bn + €49bn +€42bn
Environment & ozone impacts on health

Monetised ozone damage costs per
annum (health, crops, materials) €13.3bn €7.5bn €6.8bn €6.6bn €6.4bn €6.8bn

Cost per annum (health (ozone) and
Environment) - - +€0.5bn +€2.6bn +€3.4bn €0.5bn

Ozone monetised benefits for health - - +€0.4bn +€0.5bn +€0.6bn €0.4bn
Ozone monetised benefits to
agricultural crops - - +€0.3bn +€0.4bn +€0.5bn €0.3bn

Forests 243 119 67 59 55 63
Semi-
natural 24 8 4 3 3 3

Area of ecosystems at
risk to acidification
(000 km2)

Freshwaters 31 22 19 18 17 19
Area of ecosystems at risk to
eutrophication (000 km2) 733 590 426 375 347 416

Area of ecosystems at risk from
ozone (000 km2) 827 764 699 671 652 699

Note: Ecosystem benefits have not been monetised but still need to be considered. Depending on the type of
ecosystem and type of function valued, research has shown that each hectare improved could be worth between
€250 and €155,000. In addition, damage to buildings and materials will also be reduced.

Deutscher Bundestag – 16. Wahlperiode – 207 – Drucksache 16/1814

The strategy presented in Table 34 appears to present a more optimal balance
between economic and environmental dimensions and is more consistent with the
Lisbon Strategy objectives and the Community’s Sustainable Development Strategy.
However, the Commission will look again at this issue when reviewing this Strategy
in about five years and may adjust the basis on which the following challenging
interim health and environmental objectives are set.

By 2020 emission reductions would be required in the EU-25 of 82% for SO2, 60%
for NOx, 51% for VOCs, 27% for NH3 and 59% for PM2.5 relative to the position in
2000.

The strategy would, on average, reduce loss of life expectancy due to exposure to
PM2.5 to 4.2 months instead of 5.5 months in the baseline for 2020. Based on the
calculations from RAINS further analysis within the CBA framework allowed an
assessment of the number of people dying prematurely every year. The Strategy
would correspond to a reduction of premature deaths by about 61,500 people per
year compared with the baseline for 2020.

The number of deaths brought forward due to ozone exposure129 all over the EU
would be reduced by about 1000 people (Figure 27). At the same time, other health-
related impacts due to ozone would also be reduced. However, some regions would
still have elevated levels of ozone in 2020.

Figure 27: Maps on air quality health impact of the Thematic Strategy

2000 Baseline 2020 Strategy

Loss in life
expectancy
attributable to
anthropogenic
PM2.5 (months)

Health effects
attributable to
exposure
ground-level
ozone
(ppb.days)

129 above a cut-off of 35 ppb

Drucksache 16/1814 – 208 – Deutscher Bundestag – 16. Wahlperiode

Table 35: Change in annual health impacts over baseline in 2020
End point Poll. Unit 2000 Baseline

2020
Strategy

2000
% Change

over
baseline

Chronic mortality (years) PM thousand 3619 2467 1911,5 -23%
Chronic mortality (premature deaths) PM thousand 695,8 271,6 210,9 -22%

Infant mortality (0-1 years) (premature deaths) PM 680 350 270 -23%
Chronic bronchitis (over 27 years) PM thousand 163,8 128,1 99,4 -22%

Respiratory hospital admissions (all ages) PM thousand 62 42,3 32,8 -22%
Cardiac hospital admissions (all ages) PM thousand 38,3 26,1 20,2 -23%
Restricted activity days (15-64 years) PM million 347,7 222 172 -23%

Respiratory medication use (children 5-14 years) PM million 4,2 2 1,55 -23%
Respiratory medication use (adults over 20 years) PM million 27,7 20,9 16,2 -22%

Lower respiratory symptom (LRS 5-14 years) PM million 192,8 88,9 68,9 -22%
LRS among adults (over 15years) with chronic

symptoms
PM million 285,3 207,6 160,9 -22%

Acute mortality (premature deaths) O3 thousand 21,4 20,8 19,2 -8%
Respiratory hospital admissions (over 65years) O3 thousand 14 20,1 18,5 -8%
Minor restricted activity days (MRADs 15-64

years)
O3 million 21,4 12,9 9,7 -25%

Respiratory medication use (5-14 years) O3 million 8,8 8,2 7,2 -12%
Respiratory medication use (over 20 years) O3 million 53,9 42,4 41,8 -1%

Cough and lower respiratory symptom (LRS 0-14
years)

O3 million 108,1 65,3 60,4 -8%

Source: CAFE Cost-Benefit Analysis

Table 36: Change in annual health impacts over baseline in 2020 (millions of euros)
Endpoint Pollutant Strategy
Chronic mortality – VOLY – (median value) PM 29,041
Chronic mortality – VSL – (median value) PM 59,500

Chronic mortality – VOLY – high (mean value) PM 65,186
Chronic mortality – VSL – high (mean value) PM 122,416
Infant mortality (0-1 years) – (median value) PM 112
Infant mortality (0-1 years) – (mean value) PM 224
Chronic bronchitis (over 27 years) PM 5,392
Respiratory and cardiac hospital admissions PM 31
Restricted activity days (RADs 15-64 years) PM 4,173
Respiratory medication use PM 5
Lower respiratory symptoms PM 2,563

Acute mortality (VOLY median) O3 83
Acute mortality (VOLY mean) O3 186
Respiratory hospital admissions and medication use O3 5
Minor restricted activity days (MRADs 15-64 years) O3 124
Cough and lower respiratory symptoms (0-14 years) O3 189
Total with mortality – VOLY – (median value) 41,718
Total with mortality – VSL – (median value) 72,177

Total with mortality – VOLY –(mean value) 78,078
Total with mortality – VSL – (mean value) 135,308
Source: CAFE Cost-Benefit Analysis

Deutscher Bundestag – 16. Wahlperiode – 209 – Drucksache 16/1814

The contribution of the Strategy to ecosystem and non-health benefits can be
estimated as follows:

– The Strategy would reduce the forest area receiving acid deposition above the
critical load further by about 56,000 km2. The area of freshwater ecosystems
(Figure 28) in these EU Member States receiving a deposition of acid above the
critical load is estimated to be further reduced by decrease by 3,000 km2.

– The Strategy would reduce the area with excess deposition of nitrogen above the
critical load by a further 174,000 km2, but substantial and severe eutrophication
problems would remain in many Member States (Figure 28).

– The area of ecosystems at risk from ozone would further decrease by 65,000 km2.
The overall damage to crops (mainly wheat yield loss, Figure 28) would be further
reduced by about 330 million euros in 2020.

Figure 28: Maps on air quality impact on ecosystems of the Thematic Strategy

2000 Baseline 2020 Strategy

Percentage of
freshwater
ecosystems
area receiving
acid deposition
above the
critical loads

Percentage of
total
ecosystems
area receiving
nitrogen
deposition
above the
critical loads

Reduction of
impacts of
ozone on wheat
yields

Source: RAINS. Note: Calculation results are based on meteorological conditions of 1997.

Drucksache 16/1814 – 210 – Deutscher Bundestag – 16. Wahlperiode

To sum up, the Strategy would trigger by 2020 improvements of (relative to 2000):

– 47% in life expectancy lost from exposure to particulate matter

– 10% fewer cases of acute mortality from exposure to ozone

– 74% less forest area and 39% less freshwater area where acidification critical
loads are exceeded

– 43% less area where critical loads for eutrophication are exceeded

– 15% less forest area where critical levels are exceeded due to ozone

These improvements include both the effect of this Strategy and the cumulative
effect of current legislation. Figure 29 demonstrates how these improvements are
divided.

Figure 29: Improvement of health and environment due to the Thematic
Strategy

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Health (PM2.5)

Health (ozone)

Forest acidification

Ecosystem acidification

Freshwater acidification

Eutrophication

Forest damage (ozone)

Current legislation
Further improvement

Source: RAINS and CAFE Cost-Benefit Analysis

Annual abatement costs of the measures included in the Thematic Strategy are
estimated at €7.1 billion. Table 37 and Figure 30 disaggregate the costs by pollutant
and major source. As explained in Chapter 6, this is a preliminary estimate that does
not take into account substantial issues, such as:

– For transport, the costs forecast relate to one emission reduction scenario based on

a single source of data. Future emissions standards will be defined on the basis of
a more detailed impact assessment (See Section 5.5.2.). Accompanying and non-

Deutscher Bundestag – 16. Wahlperiode – 211 – Drucksache 16/1814

technological measures may also influence in a positive way the cost-
effectiveness of these standards.

– For energy, additional measures of energy efficiency could trigger additional
emissions reduction.

– For agriculture, estimates do not take into account the impact of the Common
Agricultural Policy reform or the implementation of the nitrate and IPPC
directives (see section 5.5.1). Moreover, the decrease in ozone damage to crops
has to be taken into account (see section 5.7.5.). It would amount to €0.3 billion in
2020, corresponding to more than 13% of the direct cost of the measures for
Agriculture.

Table 37: Annual abatement cost per pollutant for the Thematic Strategy by
2020 (millions of euros)

Ambition level Annual Cost (€ million)
SO2 934
NOx 998
NH3 2.595
Primary PM 2.5 636
VOC 118
Road transport (both PM2.5 and NOx) 1.868
Total 7.149

Source: RAINS.

Figure 30: Sectoral distribution of the cost of the measures associated with the
Thematic Strategy (millions of euros and % total).

Other industrial
process and waste;

819; 11%

Fuel production and
conversion; 262; 4%

Transport; 1.964; 27%

Large Combustion
Plants (power and

heat); 381; 5%
Large Combustion

Plants (industry); 569;
8%

Small Combustion
Plants; 559; 8%

Agriculture (crops);
279; 4%

Agriculture (animals);
2316; 33%
Source: RAINS

Drucksache 16/1814 – 212 – Deutscher Bundestag – 16. Wahlperiode

All these elements will be analysed in depth during the review of the National
Emission Ceilings Directive. The objective will be to promote measures which are
synergistic for the various environmental media and at the same time to help achieve
various environmental objectives with cost effective measures.

Attainment of these targets is estimated to cost about 0.05% of the EU-25 GDP in
2020. No net change in employment is expected to result. Production lost through ill
health would also be reduced whilst those in lower income groups may be expected
to benefit most as these groups are generally exposed to the highest levels of air
pollution.

Although the effect on GDP is slighly negative, it is known that high environmental
standards can be an engine for business growth and innovation. The EU can also gain
competitive advantages and create opportunities by focusing research and
development on resource-efficient and less polluting technologies that other
countries will eventually need to adopt. Whilst developed countries, like the USA
and Japan, already have similar air pollution policies in place, it is clear that
developing countries like China and Korea are also increasingly concerned about air
pollution, are taking positive steps to limit emissions and are looking for policy and
technical inspiration from Europe.

10.2. Better regulation –– cutting red tape and streamlining current air quality
legislation

In order to improve the regulatory framework on air quality in line with the
Commission’s strategic objectives for 2005-2009 calling for better regulation, it is
indispensable to modernise and simplify the current air quality legislation – and to
reduce its volume – in order to improve the competitiveness of the European
economy.

The Commission therefore proposes to combine the Framework Directive, the First,
Second and Third Daughter Directives, and the Exchange of Information Decision
into a single Directive on “Ambient Air Quality and Cleaner Air for Europe”. This
will cut red tape, clarify and simplify ambiguous provisions, repeal obsolete
provisions, modernise and reduce reporting requirements and introduce new
provisions on fine particulates. The Fourth Daughter Directive will be merged later
by means of a simplified “codification” process. While the impact of this
modernisation and simplification exercise cannot be quantified in monetary terms, it
is certain to have positive effects on competitiveness by reducing bureaucracy and
increasing transparency.

It is necessary to address certain problems which have occurred with implementation
of the current air quality legislation. The Commission proposes to allow Member
States to extend the deadline for compliance in affected zones if objectively
verifiable conditions are met, including information about compliance with certain
Community legislation contributing to improvement of air quality. As a quid pro quo
the Member States would have to develop and implement an air pollution abatement
programme to ensure that the limit values are attained by the time the extension

expires. It has not been possible to quantify the impact of this proposal, which is a
“safety valve” against unduly high abatement costs in exceptional situations.

Deutscher Bundestag – 16. Wahlperiode – 213 – Drucksache 16/1814

It is also necessary to bring the reporting requirements for air quality into the 21st
century by using the Internet as the main means of delivery and making this
compatible with INSPIRE.

The costs and benefits of cutting red tape and of modernising air quality legislation
could not be quantified in monetary terms. However, the changes are clearly
beneficial in terms of lower implementation costs and faster, more accurate
information. The Commission therefore considers the simplification and better
regulation approach justified.

10.3. Proposal for regulating particulate matter and other air pollution

In the light of recent health evidence, the Commission considers it justified to adopt
the following approach:

No change in current limit values

Based on the advice received from the scientific community – the WHO ’Systematic
review on air pollution health aspects in Europe’ and the Commission’s Scientific
Committee on Health and Environmental Risks – the Commission is not proposing to
revise the current limit and target values for air pollutants set by the European air
quality legislation. However, the Commission proposes to repeal the indicative limit
value for PM10 for 2010 and – on the basis of scientific advice and health evidence –
to start regulating fine particulate matter below 2.5 microns (“PM2.5”) differently.

Reducing annual average urban background concentrations of PM2.5 between 2010
and 2020

The latest scientific evidence confirms that PM2.5 is responsible for significant
negative effects on human health and leads to substantial loss of life amongst
European citizens. What is more, there is no identifiable threshold below which
particulate matter would pose no risk to human health. Because of this evidence, it is
vital to regulate fine particulate matter differently from certain other air pollutants.
The Commission proposes an effective and proportionate approach: setting a
concentration reduction target of 20% between 2010 and 2020 for all Members
States, and – as part of the review of the Directive on Ambient Air Quality and
Cleaner Air for Europe - revise this into a legally binding reduction of the average
annual urban background concentration of PM2.5 once the monitoring data for 2008-
2010 of urban background monitoring stations has established the baseline.

The Commission proposes to require each Member State to reduce average annual
urban background concentrations of PM2.5 between 2010 and 2020 by a specific
percentage per cubic metre measured in the baseline concentration. This would start
in 2010. It also proposes that average annual urban background concentrations be
calculated as a three-year running average – starting from the period between 2008
and 2010 – thus moderating the impact of meteorological variability. The reduction
would be based on the arithmetic (or population weighted) mean of all measurements
of PM2.5 concentrations made in urban background locations in the territory of the
individual Member State. This reduction requirement should be set to be consistent

to the ambition level proposed in the Thematic Strategy on Air Pollution.

Drucksache 16/1814 – 214 – Deutscher Bundestag – 16. Wahlperiode

Benefits and costs of regulating PM2.5 at EU level

The benefits of the Commission’s proposal for a two-staged approach to reduce the
average urban background concentration between 2010 and 2020 will total between
€37 billion and €119 billion per annum in 2020. This is between seven and 24 times
higher than the estimated costs of between €5 and €8 billion per annum.

As the benefits demonstrably outweigh the costs of regulating PM2.5 the Commission
considers that it has demonstrated that the proposed method to regulate PM2.5
justified. However, the exact definition of the reduction requirement will be made
after the monitoring data from 2008-2010 will be available.

Capping unduly high risk

The Commission also proposes a concentration cap of 25 micrograms per cubic
metre, expressed as an annual average, to be attained by 2010. The cap is set at a
level entirely consistent with the existing limit value for PM10 and is therefore
expected to place no additional burden on Member States. The cap will apply
throughout the territory of the Member States.

This approach is expected to entail no additional implementation costs apart from
certain costs to monitor PM2.5 concentrations. These costs are estimated at between
€5 million and €12 million per annum depending how much less monitoring Member
States would carry out for SO2.

The main reason for proposing the concentration cap is to make sure that reducing
average PM2.5 concentrations will have no unintended consequences, which would
expose some Europeans to unduly high PM2.5 concentrations.

Deutscher Bundestag – 16. Wahlperiode – 215 – Drucksache 16/1814

ANNEXES

Drucksache 16/1814 – 216 – Deutscher Bundestag – 16. Wahlperiode

ANNEX 1
CAFE reference documents

The forthcoming Thematic Strategy on Air Pollution and its Impact Assessment are
based on other relevant documents produced by the Commission in the framework of
the CAFE Programme130:

Strategy, Orientation

• 6th Environment Action Programme

• Communication "The Clean Air for Europe (CAFE) Programme: Towards a
Thematic Strategy for Air Quality" COM(2001)245

Methodology

• Methodology for the Integrated Assessment Modelling

– Review of the Rains Integrated Assessment Model

– Documentation of the RAINS model approach prepared for the RAINS peer
review 2004

• Methodology for the Cost-Benefit Analysis of the CAFE Programme (AEAT,
March 2005):

– Volume 1: Overview of Methodology

– Volume 2: Health Impact Assessment

– Volume 3: Uncertainty : Methods and First Analysis

– Peer review Cost-Benefit Analysis of the CAFE Programme report

• Health Effects of Air Pollution

– Systematic review of health effects of air pollution in Europe (WHO, June 2004)

– Second Position Paper on Particulate Matter (CAFE Working Group on
Particulate Matter, December 2004)

Integrated Assessment Modelling and Cost-Benefit Analysis

• Baseline

– Energy Baseline Scenarios for the Clean Air for Europe (CAFE) programme.
(NTUA, December 2004)

130 All the documents are available on Europa website at :

http://europa.eu.int/comm/environment/air/cafe/general/keydocs.htm

Deutscher Bundestag – 16. Wahlperiode – 217 – Drucksache 16/1814

– CAFE Scenario Analysis Report 1, "Baseline Scenarios for the Clean Air for
Europe (CAFE) Programme" (IIASA, February 2005)

– CAFE Cost-Benefit Analysis: Baseline Analysis 2000 to 2020 (AEAT, April
2005)

• Scenarios

– CAFE Scenario Analysis Report Nr. 2, "The “Current Legislation” and the
“Maximum Technically Feasible Reduction” cases for the CAFE baseline
emission projections" (IIASA, November 2004)

– CAFE Scenario Analysis Report Nr. 3, "First Results from the RAINS Multi-
Pollutant/Multi-Effect Optimization including Fine Particulate Matter" (IIASA,
January 2005)

– CAFE Scenario Analysis Report Nr. 4, "Target Setting Approaches for Cost-
effective Reductions of Population Exposure to Fine Particulate Matter in Europe"
(IIASA, February 2005)

– CAFE Scenario Analysis Report Nr. 5, "Exploratory CAFE scenarios for further
improvements of European air quality" (IIASA, March 2005)

– CAFE Scenario Analysis Report Nr. 6, "A final set of scenarios for the Clean Air
For Europe (CAFE) programme" (IIASA, June 2005)

– Cost-Benefit Analysis of Policy Option Scenarios for the CAFE programme
(AEAT, August 2005)

Measures

• Review and ex-Post Evaluation of current policies and measures:

– Recommendations on the review of Directive 1999/30/EC (WG on
Implementation, June 2004)

– Review of the National Emission Ceiling Directive

– Assessment of the Effectiveness of European Air Quality Policies and Measures
(DMU, 2004):

– Shell report,

– Case Studies on EU and US Approaches ( Acidification, Eutrophication and
Ground-Level Ozone,

– Air Quality Standards and Planning Requirements,

– Controlling Emissions from High-Emitting Vehicles,
– Approaches towards Particulate Matter,

Drucksache 16/1814 – 218 – Deutscher Bundestag – 16. Wahlperiode

– Survey to assess successes and failures of the EU Air Quality Policies,

– Study on transparency and public participation,

– Report on databases,

– Lessons learned and Recommendations,

– "Ex-post" Evaluation of Short-term and Local Measures in the CAFE Context
(AEAT, January 2005

• New Measures:

– Assessment of Air Emission impact of emerging technologies (DFIU/IFARE,
November 2004)

– Small scale combustion installations (AEAT, November 2004)

– Evaluation of the Potential Scope for and Costs of Further Reductions of
Emissions of VOCs from Refuelling Operations at Service Stations ("Stage II") in
an Enlarged European Union (ENTEC, to be published)

– Report of the conference on policy instruments on air pollution (November 2004)

Stakeholder and Public Consultation

• Public views on air pollution in the European Union, Results of the European
Commission's public consultation on air pollution (TNO, April 2005)

• CAFE Steering group

• Working Group on Target Setting and Policy Assessment

• Working Group on Particulate Matter

• Working Group on Implementation

Deutscher Bundestag – 16. Wahlperiode – 219 – Drucksache 16/1814

ANNEX 2
Methodology and models for the impact assessment

This annex describes the methodologies developed for the construction of the CAFE
baseline and the tools used by DG Environment during the CAFE Programme to
develop the Strategy, including assessment of policy options, namely the PRIMES,
RAINS, CBA and GEM-E3 models.

BUILDING THE CAFE BASELINE

A baseline of future energy consumption, emissions and air pollution is required in
order to make an assessment of the effectiveness of current policies and to propose a
strategy to address remaining problems and to make progress towards the
Community air pollution objectives. This baseline must be as realistic as possible and
incorporate the full effects of current policies to combat air pollution. An extensive
dialogue therefore took place between the Commission, its contractors, Member
States and stakeholders to ensure that a robust and consistent baseline was
developed.

A consistent EU-wide baseline was constructed that built upon economic projections
from DG ECFIN, agricultural projections from DG AGRI and information from the
Member States. An EU-wide baseline was preferred in order to avoid inconsistencies
in methodologies and to take into account the facts that market integration makes it
more and more difficult to construct a national baseline in isolation from other
Member States and that national baselines may include some strategic behaviour.

The baseline takes into account:

– what changes are likely in the output of the pollution sources (i.e. how much more
energy and emissions are likely to be required given the most plausible GDP
growth rate);

– what autonomous technological development might induce (e.g. new plants tend
to be more efficient and cleaner than old ones);

– what legislation will be in place to control emissions; and

– what role external factors could play (e.g. movements in world market prices of
coal, gas and oil).

The approach taken to construct the baseline was first to develop a consistent EU-
wide energy scenario using the PRIMES model for all of the EU-25 Member States.
These energy balances were then used as exogenous input to the RAINS model
which gave estimates of emissions up until 2020 and also predicted the
environmental damage caused by those emissions for the EU-25 region. Emissions
projections are built upon a thorough knowledge of current emissions and
corresponding air pollution levels. These have been established on the basis of

emission inventories and air quality measurements reported by Member States under
Community legislation or to the CLRTAP.

Drucksache 16/1814 – 220 – Deutscher Bundestag – 16. Wahlperiode

Demographic and economic hypothesis

The starting point for the CAFE baseline is the “Long-Range Energy Modelling”
(LREM) study from DG Energy and Transport, finalised in December 2002131.
CAFE has taken the LREM base case and used revised demographic and
macroeconomic assumptions which reflect the latest information and trends.

The EU-25 population remains fairly stable at 2000 levels, according to EUROSTAT
historical data and projections for population and the projections of the United
Nations Global Urban Observatory and Statistics Unit of UN-HABITAT for
household size.

The current situation in each country, together with clearly identifiable trends and the
identifiable driving forces of growth for each economy, were used to determine the
growth rates in individual branches of industry. As a result, GDP growth in the EU
averaging 2.3% per annum in 2000-2030 was used. This is modest compared to the
ambitions of the Lisbon strategy, but high compared with the current weak state of
the EU economy. Faster economic growth was assumed in the new Member States
(3.5% per annum in 2000-2030) combined with gradual convergence of the EU
economies throughout the projection period. However, even in 2030 per capita GDP
in the acceding countries will remain more than 30% below the EU average (from
55.5% lower in 2000).

Economic modernisation will also continue throughout the projection period - on the
one hand in the form of restructuring away from primary and secondary sectors
towards services and on the other hand through dematerialisation of industrial
production (a trend driven by a shift away from energy-intensive processes and an
increasing proportion of new industrial activities with high value added and a lower
material base).

Economic development assumptions for EU-25 for the CAFE baseline

80%

100%

120%

140%

160%

180%

2000 2005 2010 2015 2020

GDP Primary energy use Passenger km
Freight ton-km Cattle lifestock Sea transport

Source: Baseline Scenarios for the Clean Air for Europe (CAFE) Programme - Final Report

131 This assessment covered the EU Member States (PRIMES model), the 13 EU candidate countries (ACE

model), Norway and Switzerland (ACE model). For a detailed analysis of the assumptions and results
see the publication by DG Energy and Transport: “European Energy and Transport – Trends to 2030”.

Deutscher Bundestag – 16. Wahlperiode – 221 – Drucksache 16/1814

Sectoral developments

In order to construct the baseline, assumptions had to be made on how firms will
innovate (because of competition, change of production methods, replacement of old
equipment, etc.) and how this innovation relates to changes in GDP and then to
emissions. The following sectors are considered particularly important in the air
quality context: energy production, transport, industry and agriculture.

Energy and transport projections are produced by the PRIMES energy market model
for EU-25. LREM was taken as the basis for the CAFE baseline; however, this
baseline assumed explicitly that no further climate policy measures would be taken.
It was important to know the implications for air pollution assuming EU-25 were to
meet its Kyoto Protocol obligations. After consulting the Climate Change Unit of
DG Environment it was decided that – for the purposes of the CAFE baseline
scenario – all measures to comply entailing a marginal cost of up to €12/tCO2 would
be taken in EU-25. Above this cost it was implicitly assumed that Joint
Implementation or Clean Development Mechanism measures plus other means of
compliance (e.g. carbon sequestration) would be used.

It was also assumed that by 2020 the carbon constraint would increase slightly. For
the purposes of the CAFE baseline it was assumed that the compliance cost in the EU
would be €20/tCO2. Again, the implicit assumption was that measures along the lines
of Joint Implementation, the Clean Development Mechanism or carbon sequestration
would be undertaken where compliance costs were higher. For 2015 it was assumed
that the compliance cost would be in between the 2010 and 2020 levels. This means
that the compliance cost was assumed to be €16/tCO2 in 2015. All other assumptions
(e.g. about demographics, economic growth and its sectoral composition) were kept
constant. However, within sectors the increasing cost per tonne of CO2 would shift
the patterns of consumption of energy and transport fuels towards greater fuel
efficiency and lower CO2 emissions.

In addition to the two modified LREM projections (i.e. without and with climate
measures), two further scenarios were developed in the CAFE Programme:

– National projections for energy use up to 2020. These were submitted by some 10
Member States but not all of the projections gave complete sectoral coverage and
it was therefore not always possible to compare them fully with the CAFE
baseline.

– An “illustrative climate” scenario, assuming a 20% reduction in CO2 emissions in
2020 compared to 1990 corresponding to a compliance cost in 2020 of €90 per
tonne of CO2. It was considered important to see what the implications of such a
scenario would be for air pollution.

The CAFE baseline scenario incorporates updated energy, economic and financial
information (taking 2000 as the base year). It reflects recent trends and policies in
place, such as the fuel efficiency agreement with the car industry, the liberalisation of
the electricity and gas markets, existing policies on energy efficiency and renewable
energy sources, ongoing infrastructure projects and current nuclear policies.

Drucksache 16/1814 – 222 – Deutscher Bundestag – 16. Wahlperiode

The projected trend for the EU-25 energy system in the CAFE baseline scenario
shows that despite the evidence of further de-linking of economic growth from
energy demand in EU-25, energy demand is expected to continue to grow. During
the period 2000 to 2020 primary energy demand in EU-25 is set to increase by 9.2%
compared to GDP growth of 58.6%, implying that energy intensity in EU-25
(expressed as primary energy demand per unit of GDP) will improve at a rate of
1.85% per annum. Improvements in energy efficiency (on both the demand and the
supply sides), changes in the structure of EU industry, saturation in demand for some
important energy needs and the policies already in place are some of the key drivers
for the projected intensity gains.

EU-25 primary energy indicators 1995-2020 (1990 = 100)

0

20

40

60

80

100

120

140

160

180

200

220

1995 2000 2005 2010 2015 2020
40

50

60

70

80

90

100

110
GDP
Primary Energy Demand
CO2 emissions

Energy Intensity

Carbon intensity
Source: PRIMES, Energy Baseline Scenarios for the CAFE Programme

Significant changes will also occur in the demand-side fuel mix as a result of the
projected shifts towards the use of more efficient and less carbon-intensive energy
sources. Solid fuels will decline continuously over the projection period accounting
for just 2.5% of energy needs on the demand side in EU-25 by 2020 (down from
5.3% in 2000 and 11.7% in 1990). Liquid fuels will remain the main energy carrier
in demand sectors in EU-25 over the projection period, but will grow at rates well
below average, constantly losing market share. By 2020 some 76% of demand for
liquid fuels is projected to come from the transport sector, compared to 67% in 2000.

Following the introduction of an EU-wide CO2 emissions trading scheme, CO2
emissions are projected to decline further than observed in the recent past, falling to
7.4% below 1990 levels in 2010 (from 1990 to 2000 CO2 emissions fell by 2.8%
whereas the corresponding primary energy needs grew by 6.2%). However, beyond
2010 once more and more use has been made of the options available for shifting the

fuel mix towards less carbon-intensive energy sources, carbon intensity is projected
to deteriorate with CO2 emissions in 2020 down by 3.6% on 1990 levels.

Deutscher Bundestag – 16. Wahlperiode – 223 – Drucksache 16/1814

The transport baseline used for the CAFE integrated assessment is derived from the
PRIMES energy projection. This ensures consistency with the energy baseline, and
the projections include trends in emissions from international transport. The transport
baseline is supplemented by the outcome of an upgraded version of the
TREMOVE132 model, an integrated simulation tool developed within the framework
of the Auto-Oil II Programme for strategic analysis of the costs and effects of a wide
range of policy instruments applicable to local, regional and European transport
markets.

The ammonia emissions from agriculture are taken from the CAPRI133 model
specifically constructed for modelling agricultural production (and emissions).

Effect of legislation

In order to convert economic activity into air pollution and air quality it is necessary
to know how current environmental and other legislation – both in EU-15 and in the
new Member States134 – will affect emissions in the future. A large number of
directives lay down minimum requirements to control emissions from specific
sources. These are listed below:
132 http://www.tremove.org
133
For a description of the CAPRI (Common Agricultural Policy Regional Impact Analysis) modelling

system see http://www.agp.uni-bonn.de/agpo/rsrch/capri/capri_e.htm
134 It has been assumed that all new Member States will have fully implemented the ‘acquis’ by 2015 to

2020.

Drucksache 16/1814 – 224 – Deutscher Bundestag – 16. Wahlperiode

Measures considered for the CAFE baseline

Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the limitation of
emissions of certain pollutants into the air from large combustion plants135

Council Directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control136

Council Directive 1999/32/EC of 26 April 1999 relating to a reduction in the sulphur content of certain liquid
fuels and amending Directive 93/12/EEC137

Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality
of petrol and diesel fuels and amending Council Directive 93/12/EEC138

European Parliament and Council Directive 94/63/EC of 20 December 1994 on the control of volatile organic
compound (VOC) emissions resulting from the storage of petrol and its distribution from terminals to service
stations139

Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds
due to the use of organic solvents in certain activities and installations140

Directive 2004/42/EC of the European Parliament and of the Council of 21 April 2004 on the limitation of
emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and
vehicle refinishing products and amending Directive 1999/13/EC141

Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration
of waste142

Directive 2002/51/EC of the European Parliament and of the Council of 19 July 2002 on the reduction of the
level of pollutant emissions from two- and three-wheel motor vehicles and amending Directive 97/24/EC143

Directive 1998/69/EC of the European Parliament and of the Council of 13 October 1998 relating to measures
to be taken against air pollution by emissions from motor vehicles and amending Council Directive
70/220/EEC144

Directive 2002/88/EC of the European Parliament and of the Council of 9 December 2002 amending Directive
97/68/EC on the approximation of the laws of the Member States relating to measures against the emission of
gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile
machinery145

Council Directive 88/77/EEC of 3 December 1987 on the approximation of the laws of the Member States
relating to the measures to be taken against the emission of gaseous pollutants from diesel engines for use in
vehicles146
135 OJ L 309, 27.11.2001, p. 1.
136 OJ L 257, 10.10.1996, p. 26.
137 OJ L 121, 11.5.1999, p. 13.
138 OJ L 350, 28.12.1998, p. 58.
139 OJ L 365, 31.12.1994, p. 24.
140 OJ L 85, 29.3.1999, p. 1.
141 OJ L 143, 30.4.2004, p. 87.
142 OJ L 332, 28.12.2000, p. 91.
143 OJ L 252, 20.9.2002, p. 20.
144 OJ L 350, 28.12.1998, p. 1.
145
OJ L 35, 11.2.2003, p. 28.
146 OJ L 36, 9.2.1988, p. 33.

Deutscher Bundestag – 16. Wahlperiode – 225 – Drucksache 16/1814

The baseline of future emissions includes all of those known measures, both national
and Community, which have a direct impact on emissions. The baseline projections
take no account of caps imposed on total national emissions by the National
Emission Ceilings Directive, nor of compliance with the Air Quality Framework and
Daughter Directives to avoid local pollution “hot spots”. The NECD and the ambient
air quality legislation only have an indirect impact on emissions because they
establish environmental quality standards or emissions caps. Member States must
adopt specific direct measures in order to comply with their provisions. It is these
direct measures and policies which are modelled in the RAINS integrated assessment
model. It is not capable of handling/estimating the impact of indirect measures such
as NECD.

The annual emissions ceilings in the NECD come into force in 2010. Currently,
several Member States may have difficulty in attaining their ceilings for nitrogen
oxides. This is not a widespread problem however. If ceilings for particular
pollutants are met after the attainment date of 2010, then our current analyses will
have over-estimated the costs associated with the policy scenarios. This is because
costs associated with attainment of the NECD should be associated with existing
legislation rather than the thematic strategy. Member States will take the same
measures either before or after 2010, the issue of whether the costs should be
attributed to the thematic strategy or implementation of existing legislation.

Other legislation could have a significant indirect impact on air quality. For instance,
changes in the common agricultural policy could have an impact on ammonia
emissions. Implementation of the Landfills Directive (which shifts waste from
landfills to incinerators) could change air emissions as well. As mentioned above, the
legislation to reduce energy-related CO2 emissions is included147 and an alternative
scenario without additional climate change measures beyond the “Kyoto Protocol”
has been introduced so that the specific impact of these measures on air quality can
be assessed.

METHODOLOGY FOR QUANTIFYING THE HEALTH IMPACT OF AIR POLLUTION

The methodology followed in the impact assessment aimed neither systematically to
over-estimate nor under-estimate the health effects. The impact assessment is
consistent with the WHO’s “Systematic Review of Health Aspects of Air Quality in
Europe”148 and with the advice of the UNECE WHO Joint Task Force on Health.
Health impacts have been estimated for both particulate matter and ozone for short-
term (acute) and long-term (chronic) exposure.

Particulate matter

The figures for particulate matter are based on the health evidence on the fine
fraction (PM2.5) based on long-term exposure. The WHO proposed using the risk
factors derived from the epidemiological studies carried out in the USA, because of
the shortage of such studies in the EU to date.

147 See report on Energy Baseline Scenarios for the CAFE Programme.
148 See http://www.euro.who.int/document/e79097.pdf and answers to follow-up questions

http://www.euro.who.int/document/e82790.pdf

Drucksache 16/1814 – 226 – Deutscher Bundestag – 16. Wahlperiode

The RAINS model and the health impact assessment are based on the advice from
the WHO Joint Task Force on Health. The RAINS model has been extended to
include the additional effect of urban air pollution (through the City Delta project149).
WHO advice has been drawn on to estimate the changes, in terms of loss of
statistical life expectancy, attributable to changes in the anthropogenic fraction of
PM2.5 emissions. The Joint Task Force recommended applying a linear
concentration-response function associating changes with health impacts (6% change
in mortality hazard per 10 µg/m3 PM2.5). This excludes the health impacts of
particulate matter from natural sources and of secondary organic aerosols. Secondary
organic aerosols have not been included in the RAINS model for lack of information.
A substantial fraction of the secondary organic aerosols could be of anthropogenic
origin; the impact of anthropogenic emissions is underestimated in the RAINS
model. In the cost-benefit analysis the RAINS assessment of the health impact due to
particulate matter was supplemented by specific quantification of infant mortality
and assessment of morbidity due to particulate matter. Using life-table methods, the
analysis expresses health impacts in terms of years of life lost because of air
pollution. However, there are methodological difficulties with estimates of the value
of a life year (VOLY). Therefore, an alternative method to estimate the effect of air
pollution has been used, in the form of estimation of premature mortality. The value
of statistical life (VSL) has been applied to premature mortality. However, the
methods used to derive the number of premature deaths are approximate and to some
extent over-estimate the true fraction attributable.

The analysis of mortality from long-term exposure applies only to adults. There is
now substantial evidence that higher levels of air pollution are associated with a wide
range of adverse effects on foetal and infant health, including mortality. In this
impact assessment, the cases attributable have been estimated, rather than life-years.
This is consistent with the approach used in the USA.

149 http://rea.ei.jrc.it/netshare/thunis/citydelta/

Deutscher Bundestag – 16. Wahlperiode – 227 – Drucksache 16/1814

City-Delta project

The objective of the City-Delta project is to explore systematic differences (deltas) between
rural and urban background air quality, how these deltas depend on urban emissions and
other factors, how they vary across cities and how they vary across models. In the first phase
of the project general differences were explored for numerous cities and over a cross-section
of European models. In the second phase (City-Delta II) a limited number of models on
regional and urban scale and a limited number of cities (Berlin, Milan, Paris and Prague)
were selected to derive functional relationships between air pollution at regional level and
the urban background levels detected.

The functional relationships derived are relevant for the situation in European cities and
depend on key parameters such as wind speed and emission densities at low and high
sources. So far functional relationships have been developed for the annual average urban
background PM2.5 concentration in European cities. The calculated values for urban
background concentrations have been compared to the data obtained on PM2.5 from
monitoring in a wide range of European cities and are generally within the 30 percent
difference band. Intercomparison shows systematic underestimation by the calculated values
compared to the monitored values. Other discrepancies remain for some cities due to
topography (e.g. valleys or basins) which have not been properly resolved and represented in
large-scale models along with issues linked with the cities effectively divided into several
grids in the large-scale EMEP model.

The functional relationships for the annual averages for PM2.5 have been used to assess more
accurately the exposure and health impact on the European urban population. The same
functional relationships are used for assessment of the future urban increment of PM2.5 and to
assess the effects of implementation of Community-wide emission control measures.

Further development of the methodology and validation of the functional relationships are
expected later. This would include functional relationships for annual urban background
ozone levels and measures to improve the parameterisation of the functional relationships for
PM2.5 and to validate the relationships.

Ozone

Effects of daily ozone exposure on ‘acute’ mortality have been calculated at
concentrations greater than 35ppb (parts per billion, which is equivalent to 70 µg/m3)
as a maximum 8-hour mean. A risk estimate of a 0.3% increase in daily mortality per
10 µg/m3 ozone has been used. This factor is based on the meta-analysis from
European studies on the health impact of ozone and part of the WHO systematic
review. The health impacts here can best be described as “deaths brought forward”
because of ozone. This signifies that people whose deaths are brought forward by
higher air pollution belong largely (but not exclusively) to a group of sensitive
people with cardio-respiratory conditions. Some people affected by ozone have a
disease or are elderly. In at least some of these cases, the actual loss of life
expectancy is likely to be small – the death might have occurred within the same year
and, for some, might only be brought forward by a few days. In this impact
assessment it has been assumed that, on average, each death has been brought
forward by 12 months.
The quantifiable impact on morbidity included major effects, such as hospital
admissions and the development of chronic respiratory disease, plus effects which
are less serious, but are likely to affect a greater number of people, for example

Drucksache 16/1814 – 228 – Deutscher Bundestag – 16. Wahlperiode

changes in frequency of use of medicines to control asthma and days of restricted
activity. When the impact and the values were combined in the analysis the most
important health-related issues to emerge were mortality, restricted activity days and
chronic bronchitis.

Atmospheric modelling

Detailed baseline reports on quantification of the environmental impacts and health
effects have been published separately (see Annex 1). The full EMEP atmospheric
model (to predict air concentrations and deposition) using the average for the 1997,
1999, 2000 and 2003 meteorological years has been calculated to assess the impact
of air pollution on human health and the environment. However, as the EMEP model
takes several months to calculate the impacts of different RAINS scenario runs
covering all the meteorological years, in this impact assessment the most typical of
the four years, i.e. 1997, was selected and all the model calculations made
consistently assumed 1997 meteorological conditions.

While for the EU as a whole 1997 was a relatively normal meteorological year, this
is not necessarily the case in any particular Member State. However, these
differences between meteorological years do not matter much as long as the impact
assessment is not carried out on measures that would affect a single particular
Member State. As the Thematic Strategy on Air Pollution imposes no direct
obligations on specific Member States the choice of 1997 as the reference year seems
justifiable.

Consequently, the output from the RAINS model for the 1997 meteorological year
was used for the cost-benefit analysis for this impact assessment. 1997 is the only
year for which source-receptor relationships are available for use in the RAINS
integrated assessment model. Although the RAINS model is an approximation of the
full EMEP model, it has been used to provide a consistent data set for the baseline
years of 2000 and 2020 and for the different levels of ambitions. This allows sensible
analysis of incremental costs and benefits for each of the policy scenarios compared
to the baseline years (see table below).

Differences in quantification of the mortality effects of PM2.5 between the full
EMEP atmospheric model and RAINS

RAINS (1997 only) Full EMEP model (four meteorological years)
2000 2020 Differ-ence 2000 2020

Differ-
ence

Average loss in
statistical life
expectancy

8.1 5.0 -3.1 8.6 5.4 -3.2

Thousand life
years lost 3.6 2.5 -1.1 3.1 1.9 -1.2

However, because the 1997 meteorological year is used throughout the impact
assessment, the baseline impacts presented in this impact assessment are slightly

Deutscher Bundestag – 16. Wahlperiode – 229 – Drucksache 16/1814

different to those indicated in the CAFE baseline report (2004)150. However, as can
be seen in the above table, the difference between the reference year (2000) and the
baseline for 2020 is very small.

Throughout this impact assessment, mortality due to PM can be expressed on the
basis of four different metrics (see table below). The RAINS integrated assessment
model can optimise the cumulative reduction in life years lost. In addition, RAINS
can produce an estimate of the average statistical life expectancy as a result of
different measures to reduce air pollution. The CBA model annualises the cumulative
life years lost. The advantage of the annual figure for life years lost is that it can be
compared with the annual costs of reducing air pollution. Finally, as it is difficult to
communicate statistical life expectancies or life years lost to the general public, the
CBA methodology gives an alternative metric of mortality due to particulate matter.
This is the number of premature deaths. These two metrics can be used to calculate
the monetised benefits of reducing air pollution.

Correspondence between different PM2.5 metrics used in the impact assessment

Average loss in
statistical life
expectancy
(months)

Cumulative life
years lost

(million years)

Annual life
years lost

(million years)

Annual
premature

deaths
(thousands)

(Source) (RAINS) (RAINS) (CBA) (CBA)

2000 8.07 203 3.62 348

Baseline 2020 5.46 137 2.47 272

Scenario A 4.37 110 1.97 218

Scenario B 4.14 104 1.87 206

Scenario C 4.02 101 1.81 200

MTFR 3.82 96 1.72 190

Source: RAINS and CAFE CBA.
Note: All calculations are based on the 1997 meteorological year.

MODELLING FRAMEWORK USED FOR CAFE INTEGRATED ASSESSMENT

The models are used to understand, on the one hand, what the situation is likely to be
in the future if no (further) action is taken (the “baseline”) and, on the other hand, the
environmental and economic implications of policies and measures to reduce
emissions (scenarios/policy options). The modelling framework was made up of
RAINS, PRIMES, the cost-benefit analysis and GEM-E3 and is used for multi-
sectoral assessment of policy to improve air quality, including an optimisation
procedure in the RAINS model.

150 Baseline Scenarios for the Clean Air for Europe (CAFE) Programme (IIASA, October 2004 – Corrected

February 2005) available at http://europa.eu.int/comm/environment/air/cafe/general/pdf/cafe_lot1.pdf

Drucksache 16/1814 – 230 – Deutscher Bundestag – 16. Wahlperiode

Modelling framework used in the impact assessment

R
A

IN
S

PRIMES
(Partial

Equilibrium on
Energy Market)

Activity in
Agriculture and
other sectors

GDP,
Demographic
assumptions

Activity

Emission
Factors

Emissions

Air Quality

Impact

Target Setting

Policy
Options

Cost-Benefits
Analysis

GEM E-3
(General

Equilibrium Model)

Energy
Scenarios

EMEP
(Source-
response

relationships)

Macro-economic &
Competitiveness

Impact

RAINS integrated assessment model

The Regional Air Pollution Information and Simulation (RAINS) model151 has been
developed by the International Institute for Applied Systems Analysis (IIASA).
RAINS has been used, for example, for calculation of the ceilings in the National
Emissions Ceilings Directive as well as analysis of the Large Combustion Plants
Directive. In the CAFE Programme, RAINS is used to develop (1) a robust baseline
scenario; (2) an operational integrated assessment modelling (IAM) framework
allowing a large number of scenarios to be analysed within CAFE; (3) scenarios
reflecting the various options for improving air quality in the enlarged EU for the
period up to 2020.

The model combines information on economic and energy development, emission
control potential and costs, atmospheric dispersion characteristics and environmental
sensitivities towards air pollution. It quantifies the contributions of the main air
pollutants152 to threats to human health posed by fine particulates and ground-level
ozone as well as to the risk of damage to ecosystems from acidification, excess
nitrogen deposition (eutrophication) and exposure to high ambient levels of ozone.
The model has been subjected to a peer review in the context of CAFE153.
151 A detailed description of the RAINS model, on-line access to certain parts of the model as well as all

input data to the model are available on the Internet (http://www.iiasa.ac.at/rains/review/index.html).
152 RAINS includes the following pollutants: sulphur dioxide (SO2), nitrogen oxides (NOx), ammonia

(NH3), non-methane volatile organic compounds (VOC) and primary emissions of fine (PM2.5) and
coarse (PM10 - PM2.5) particles. It also includes estimates of emissions of relevant greenhouse gases

such as carbon dioxide (CO2) and nitrous oxide (N2O). Work is in progress to add methane (CH4), as
another direct greenhouse gas, as well as carbon monoxide (CO) and black carbon (BC) to the model
framework.

153 http://europa.eu.int/comm/environment/air/cafe/activities/rain_model.pdf

Deutscher Bundestag – 16. Wahlperiode – 231 – Drucksache 16/1814

RAINS distinguishes 21 categories of fuel use in six economic sectors. The time
scale extends from 1990 to 2020. Emission estimates are based on national data
reported to relevant international organisations such as the Convention on Long-
range Transboundary Air Pollution and the UN Framework Convention on Climate
Change (UNFCCC).

Future economic trends – and more specifically the development of the energy
supply system, of the transport sector and of agriculture – are exogenous input to the
RAINS model. Data on transport and energy activity were derived from “European
Energy and Transport – Trends to 2030” based on the PRIMES model, while
transport emission factors were taken from the sources shared by TREMOVE.
Agricultural projections came from the CAPRI model.

Flow of information in the RAINS model

E c o n o m ic
a c t iv it ie s

E m is s io n c o n tro l
p o lic ie s

A g r ic u ltu re

N O x e m is s io n s

S O 2 e m is s io n s

S o lv e n ts , fu e ls ,
in d u s try

E n e rg y u s e

N H 3 d is p e rs io n

S d is p e rs io n

V O C e m is s io n s

N H 3 e m is s io n s

T ra n s p o r t

C r it ic a l lo a d s
f . a c id if ic a tio n

C r itic a l lo a d s f .
e u tro p h ic a tio nN O x d is p e rs io n

O 3 fo rm a tio n

N H 3 c o n tro l
& c o s ts

N O x /V O C
c o n tro l& c o s ts

V O C c o n tro l
& c o s ts

E m is s io n
c o n tro l c o s ts

C r it ic a l le v e ls
fo r o z o n e

E n v iro n m e n ta l
ta rg e ts

P r im a ry P M
d is p e rs io nO th e r a c tiv it ie s

P M c o n tro l
& c o s ts

P r im a ry P M
e m is s io n s

S e c o n d a ry
a e ro s o ls

P M P o p u la t io n
e x p o s u re

S O 2 c o n tro l
& c o s ts

N O x c o n tro l
& c o s ts

O 3 P o p u la tio n
e x p o s u re

E c o n o m ic
a c t iv it ie s

E m is s io n c o n tro l
p o lic ie s

A g r ic u ltu re

N O x e m is s io n s

S O 2 e m is s io n s

S o lv e n ts , fu e ls ,
in d u s try

E n e rg y u s e

N H 3 d is p e rs io n

S d is p e rs io n

V O C e m is s io n s

N H 3 e m is s io n s

T ra n s p o r t

C r it ic a l lo a d s
f . a c id if ic a tio n

C r itic a l lo a d s f .
e u tro p h ic a tio nN O x d is p e rs io n

O 3 fo rm a tio n

N H 3 c o n tro l
& c o s ts

N O x /V O C
c o n tro l& c o s ts

V O C c o n tro l
& c o s ts

E m is s io n
c o n tro l c o s ts

C r it ic a l le v e ls
fo r o z o n e

E n v iro n m e n ta l
ta rg e ts

P r im a ry P M
d is p e rs io nO th e r a c tiv it ie s

P M c o n tro l
& c o s ts

P r im a ry P M
e m is s io n s

S e c o n d a ry
a e ro s o ls

P M P o p u la t io n
e x p o s u re

S O 2 c o n tro l
& c o s ts

N O x c o n tro l
& c o s ts

O 3 P o p u la tio n
e x p o s u re

The RAINS model covers a variety of technical means for reducing emissions of the
pollutants considered. The model estimates the potential rate of utilisation of the
available technologies and the specific costs for each country, taking into account the
most important country-specific parameters. The description of the emission control
options comes from the RAINS databases, updated in collaboration with the Centre
of the CLRTAP’s Expert Group on Techno-Economic Issues (EGTEI).

The RAINS model uses functional relationships characterising the link between
annual emissions and the specific metric of exposures154 relevant to the individual

154 For instance, deposition of acidifying and eutrophying compounds is expressed as annual deposition

rates, reflecting the cumulative nature of acidification and eutrophication. For fine particles, mortality

Drucksache 16/1814 – 232 – Deutscher Bundestag – 16. Wahlperiode

environmental end points considered in RAINS. These relationships are derived from
the EMEP Eulerian atmospheric dispersion models155 which describe chemical
formation and pollutant transport in the atmosphere between the sources of emissions
and the receptor sites, using a grid system with 50 km x 50 km spatial resolution for
calculating rural background concentrations and deposition of pollutants. The
RAINS model includes grid-specific information on the share of urban and rural
population, the age structure, the population trend up to 2050 and age-specific
mortality rates.

Health impacts of PM and ozone

The EMEP model used by RAINS has certain drawbacks, such as not taking into
account high pollution peaks, over-estimating PM and ozone levels in winter and not
describing the daily variance in PM and ozone levels. For nitrates, one important
point to note is that EMEP uses the highly uncertain monitoring data as there are
currently no measurements for total nitrate. Consequently, winter values for total
nitrate are overestimated in EMEP as well as values for NH3 and NH4+. The
problems with wet deposition of sulphate in EMEP can be summed up as: it rains too
often and too little in the model. In the case of NOx, concentrations are
underestimated, especially for ground-level sources, as the EMEP model starts to
work from 19 m on. For PM, seasonal variations in emissions are always
underestimated (but less in winter) and unaccounted masses (i.e. measurement
artefacts) or particles bound to water droplets are only partly taken into account. Up
to now RAINS has improved on some of these issues but the following points are not
yet taken into consideration: (a) secondary aerosols, e.g. from VOC-based emissions;
(b) natural background; (c) the PM fraction that is currently not identified by
measurements or forms measurement artefacts; (d) seasonal effects in winter and
summer in Southern and Northern Europe, which can be improved and on which
work is in progress; (e) for NOx, influences of VOC emissions and vice versa; and
(f) non-linearities of effects between PM2.5 and the entire nitrogen fraction and
SOMO35 changes for ozone in spring (possibly due to the titration of ozone from
free troposphere) – these non-linearities are also included.

For PM and ozone no thresholds have been detected. Consequently, a limit approach
or an approach based on cutting ‘bad issues’ or peak concentration would not be
suitable. Here, it should be noted that on the one hand these data are mostly based on
epidemiological studies which naturally have a lower sensitivity for detecting such a
threshold compared to detailed toxicological studies either in vivo or in vitro. On the
other hand, it is important to recognise that these conclusions are also based on in
vivo animal studies and cohort studies (where a defined population group is followed
over a long period of time, e.g. 5 to 10 years or even longer – these cohorts are
difficult to establish and even more difficult to maintain, which means that ongoing
financial support is needed). PM exposure is linked to arrhythmia (i.e. a deviation
from or disturbance of the normal heart rhythm). Mortality is linked primarily to PM
impacts are estimated on the basis of long-term cohort studies, which were originally regressed against

annual mean concentrations of fine particles. For ground-level ozone, vegetation-relevant exposure will
be expressed in terms of an AOTx, i.e. hourly ozone concentrations in excess of a certain threshold
accumulated over the vegetation period.

155 For a description of the EMEP model and its results see http://www.emep.int.

Deutscher Bundestag – 16. Wahlperiode – 233 – Drucksache 16/1814

and not to ozone, while cardiovascular diseases are another major effect (e.g. linked
to black smoke (soot)). In addition, most effects will occur at ‘normal
concentrations’ for PM2.5, such as ~5-20µg/m3, although another important point to
note is that different types of PM2.5 are not equally hazardous – more work is
essential here, including more detailed monitoring. Moreover, the chronic effects of
PM on mortality seem to outweigh all the acute effects and so far PM2.5 is seen as an
appropriate indicator for these effects.

RAINS does not address compliance in local short-term hot-spots reporting
exceedance in terms of air pollution. RAINS uses the evidence from cohort studies. It
also uses the data from the US cancer society together with the life tables from
EUROSTAT. Amongst the critical assumptions made in the model, no threshold
together with a linear dose response curve is assumed for its methodology and the
impact linked to anthropogenic PM is extrapolated beyond 35µg/m3 PM2.5.
Moreover, no effects are assumed from natural PM despite the fact that these are
used positively to help patients with pulmonary-based diseases. Also, no effects for
younger population groups below 30 years old and infant mortality are included in
RAINS. Nor are secondary organic aerosols and natural sources for PM included.
For PM, a loss of life expectancy of between 3 and 13 months is estimated and for
EU-25 from 6 to 9 months have been included. Finally in relation to PM, it must be
remembered that the accuracy of the output from the RAINS model on health
depends on the accuracy of the dispersion calculation and the significant
meteorological impacts. For ozone, much smaller effects are taken into account in
RAINS than for PM. A relative risk factor of an 1.003/10 µg/m3 increase in the daily
maximum 8-hours mean together with a ‘cut-off’ value of 35 ppb from WHO
(i.e. SOMO 35) is incorporated in RAINS. Also, a premature death by 6 months due
to ozone is assumed. The peer review concluded that RAINS is following the WHO
approach and recommended further improvements relating to its underestimation of
the health effects from both ozone and PM – in urban areas only in the case of PM.

On ozone-related health effects, the model’s description of the regional concentration
of ozone and its relationship with emissions within Europe is acknowledged as
reliable, although no spatial resolution is given in the urban-scale ozone exposure
assessment, and non-linearities in response to NOx and VOC controls remain to be
resolved. (The importance of background ozone will be addressed in the course of
further development of the EMEP/RAINS framework.) RAINS has followed the
WHO recommendations and health effects are underestimated by not including other
health outcomes (only short-term effects on mortality are estimated) and the use of
the 35 ppb cut-off (no effects below 35 ppb are quantified).

On PM, RAINS has followed the WHO recommendations. Only WHO exposure-
response relationships for mortality in adults were included in RAINS. Emission
control is limited to the effects of anthropogenic primary particles and secondary
inorganic aerosols, resulting in considerable underestimation of PM2.5 concentrations
from the EMEP model, as secondary organic and natural aerosols were omitted.

Only exposure-response functions reflecting the effect of urban background exposure
may currently be applied in RAINS, resulting in a spatial scale too large for

modelling urban air quality to quantify the full magnitude of health effects and in
inconsistency between measured and modelled urban air concentrations. RAINS
modelling of urban air quality has been improved by incorporating the revised results

Drucksache 16/1814 – 234 – Deutscher Bundestag – 16. Wahlperiode

of the City Delta project156, i.e. wind speed influences, population density differences
and reductions of the EMEP grid cells from 50 km x 50 km to 2, 5 and 10 km.
However, the validation was hampered by the shortage of monitoring data from
reliable sources. For natural PM, levels of 1-3 µg/m3 were used. These were
somewhat arbitrary based on literature, which shows values of about 1 µg/m3 for
Northern Europe and about 3 µg/m3 for Southern Europe. For Spanish cities the
RAINS model underestimates the PM2.5 concentrations compared to actual
measurements. It is not yet clear if this is due to the measurements (this seems to be
more likely given the current difficulties with PM measurements) or to the
modelling. The RAINS peer review also clearly highlighted that these difficulties
need to be solved. Local reductions in cities lying in valleys have a dramatic
influence on the RAINS scenarios compared to cities located in flat areas.

Impact on ecosystems

For acidification and eutrophication, RAINS relies on the EMEP model. So far
comparability has been achieved between the data from actual monitoring and the
results from modelling. However, as highlighted by the RAINS peer review, the
static modelling approach currently used by the RAINS model will need to be
replaced in the future by the dynamic modelling approach, including impacts on
biodiversity such as changes in the presence of populations of different species.

– On acidification, atmospheric depositions calculated for coastal areas by EMEP
do not reflect the effects of shipping sources. Deposition in complex terrain (hills,
forest edges, etc.) is still underestimated, which could lead to underestimation of
the need for controls.

– No final agreement has yet been reached on how results from dynamic modelling
could be handled in RAINS, but application of the dynamic approach may also be
limited by the lack of input data including deposition of base cations.

– On eutrophication, the spatial scale of the reductions in the nitrogen impact (like
that of urban air quality) is small in relation to the 50 km x 50 km scale of the
RAINS model. Critical loads are probably smaller than in present assessments and
this could lead to underestimation of the controls required in order to achieve a
certain environmental status.

– The fixed critical loads approach currently used will not be able to pick up the
dynamic aspects involved in eutrophication of ecosystems and further
development of dynamic models is needed in order to include nitrogen processes
in vegetation and soils.

On the effects of ozone on vegetation, the AOT30 or AOT40 are well established for
measuring effects and it is recommended that they be used, while the review of the
EMEP model concluded that source-receptor matrices can be established for policy
purposes. Humidity and climatic conditions such as light and temperature together
with nutrient availability are taken into account. RAINS does not yet apply a flux
approach for crops. In addition, RAINS needs further improvements on small effects

156 http://rea.ei.jrc.it/netshare/thunis/citydelta/

Deutscher Bundestag – 16. Wahlperiode – 235 – Drucksache 16/1814

related to grid-average data such as the sulphur/ammonia co-deposition which
actually takes place. However, it must be noted that this is negligible from the overall
European point of view but can have a dramatic influence when local emission
reduction measures are implemented in different regions in Member States, as shown
by national models such as the ASAM model used in the UK. These drawbacks were
highlighted in the RAINS peer review.

Emission control

For a given activity scenario, RAINS is used to identify the lowest-cost combination
of emission controls meeting user-supplied air quality targets, taking into account
regional differences in emission control costs and atmospheric dispersion
characteristics. The optimisation function is used to search for the lowest-cost mixes
of controls for the six pollutants (SO2, NOx, VOC, NH3, primary PM2.5, primary
PM10-2.5 (=coarse PM)) over the various sectors of the economy in all European
countries which would simultaneously achieve user-specified targets for human
health impacts (e.g. expressed in terms of reduced life expectancy), ecosystems
protection (e.g. expressed in terms of excess acid and nitrogen deposition) and
maximum allowed violations of WHO guide values for ground-level ozone, etc.

In the RAINS model, emission control costs are evaluated at the production level, not
at the level of consumer prices. Any mark-ups added to production costs by
manufacturers or dealers do not represent actual resource use and are therefore
ignored. Any taxes added to production costs are similarly ignored as transfers. The
same applies to subsidies.

From the three components of expenditure on emission control (investment, fixed
operating costs and variable operating costs), RAINS calculates annual costs per unit
of activity level. Subsequently, these costs are expressed per tonne of pollutant
abated. The annual cost method is applied, taking into account a uniform interest rate
of 4% and constant prices for the year 2000.

Some of the parameters are considered common to all countries. These include
technology-specific data, such as removal efficiencies, unit investment costs, fixed
operating and maintenance costs, as well as parameters used for calculating variable
cost components such as the extra demand for labour, energy and materials.

Country-specific parameters characterise the type of capacity operated in a given
country and its operating conditions. These parameters include the average size of
installations in a given sector, operating hours, annual fuel consumption and vehicle
mileage. Costs for labour, electricity, fuel and other materials as well as for waste
disposal also fall into that category.

Although based on the same principles, the methodologies for calculating costs for
individual sectors need to reflect the relevant differences, e.g. in terms of capital
investment. Separate formulas are therefore developed for stationary combustion
sources, stationary industrial processes and mobile sources (vehicles).

The peer review highlighted that a sensitivity analysis must be performed at country

and sector level in order to gain a better understanding of any possible biases. This
work is currently in progress. Also, in the future RAINS should be able to obtain

Drucksache 16/1814 – 236 – Deutscher Bundestag – 16. Wahlperiode

more up-to-date data on technologies and their costs from different data providers,
notably EGTEI.

The RAINS model deals mainly with technical measures. This could introduce a bias
in the results in that it over-emphasises costly (end-of-pipe) solutions and overlooks
less expensive options implied or inherent in structural changes and reactions of the
economy to market stimuli. However, if the energy mix includes such changes
RAINS would calculate these effects. For example, the inclusion of climate change
policies in the impact assessment on the Thematic Strategy on Air Pollution has
induced certain structural changes and these have been estimated in the RAINS
model.

The inclusion of non-technological measures, in particular in the transport sector,157
would produce a more accurate estimate of the cost of policy. If non-technical
measures are included, environmental benefits could be realised more cost-
effectively.

Other basic general drawbacks include the quality of monitoring data (bearing in
mind the current problems with PM monitoring, sampling and measurements as
inputs; the uncertainties and classifications of different emission data and their
aggregation levels such as those from VOCs; incorporation of variability of scenarios
based on different meteorological years; and inclusion of improvements in relation to
the current 50 km x 50 km grid size.

PRIMES energy market model

The PRIMES158 model is used in conjunction with the RAINS model to feed in
energy production and consumption in different Member States. It was developed by
the National Technical University of Athens (NTUA) and has been used, among
others, by DG TREN for “European Energy and Transport – Trends to 2030”.

The model determines the equilibrium by finding the prices of each energy source at
which the quantity producers see fit to supply matches the quantity which consumers
in the Member States wish to use. The equilibrium is static (within each time period)
but repeated in a time-forward path, under dynamic relationships. The model
represents in detail the available energy demand and supply technologies and
pollution abatement technologies. It reflects considerations about market economics,
industrial structure (e.g. impact of liberalisation), energy/environmental policies and
regulations. PRIMES is designed for forecasting, scenario construction and analysis
of policy impact. It covers a medium- to long-term scale (2030).
157 The original plan was that TREMOVE would provide sectoral input data for RAINS in the context of

the CAFE Programme. This proved impossible due to the timetable for the two projects (as the final
version of TREMOVE was not scheduled until a point when RAINS was already performing
simulations). In the context of the forthcoming review of the NEC Directive, TREMOVE will be

recalibrated to ensure consistency with RAINS and will be used to analyse technological measures as
well as to introduce elements reflecting the reactions of the economy to market stimuli in the process of
optimisation of transport measures.

158 http://www.e3mlab.ntua.gr

Deutscher Bundestag – 16. Wahlperiode – 237 – Drucksache 16/1814

Cost-benefit analysis

The methodology has been developed under the ‘Service Contract for Cost-Benefit
Analysis (CBA) of Air Quality Related Issues, in particular in the Clean Air for
Europe (CAFE) Programme’. The objective of the service contract was to establish
the capability to assess the costs and benefits of air pollution policies and to analyse
scenarios generated within the CAFE Programme. The methodology paper:

– defined the overall rationale for the CBA, in particular by demonstrating how it
builds on the impact assessment carried out in the RAINS integrated assessment
model and the TREMOVE transport model;

– identified a general framework for quantifying impacts, including links to the
other models;

– identified the assumptions and data (stock at risk inventories, response functions,
unit valuations) that will form the basis for quantification of the benefits;

– set out the approaches for extending the CBA to unquantifiable impacts and for
addressing other uncertainties;

– took account of the views expressed by stakeholders during the consultation
process from December 2003 to October 2004;

– took account of the suggestions of the independent scientific peer review which
was carried out from July to September 2004.

The role of cost-benefit analysis in the CAFE Programme

The links between different pollutants and the direct effects listed in the table below
define the rationale behind the CAFE Programme: the only way to develop the most
cost-effective strategies for control of these impacts is through simultaneous
reduction of the pollutants covered by CAFE.

Direct and indirect impacts addressed in the cost-benefit analysis
PM2.5 SO2 NOx VOCs NH3
Direct impacts
Tropospheric ozone formation, leading to effects on
health, crops, materials and ecosystems

� �

Health impacts from primary pollutants and secondary
pollutants (ozone and aerosols)

� � � � �

Ecosystem acidification � � �
Ecosystem eutrophication � �
Damage to building and other materials � �
Indirect impacts
Changes in greenhouse gas emissions as a result of
measures employed to control CAFE pollutants

� � � � �

Wider social and economic effects from impacts and
the measures recommended for their control

� � � � �
The relationship between the CBA and the other models and activities linked to the
CAFE Programme is illustrated in the diagram below. The links from the RAINS and

Drucksache 16/1814 – 238 – Deutscher Bundestag – 16. Wahlperiode

CBA models to scenario development and target setting are shown by a dashed line
to highlight the fact that although these processes will be influenced by model
outputs, they are not direct outputs of the models.

It is important to draw a distinction between the roles of the RAINS and CBA
models. RAINS identifies a cost-effective set of measures for meeting pre-defined
health and environmental quality targets. The CBA model takes this analysis a stage
further by assessing the magnitude of benefits and whether the overall benefits are
higher or lower than the estimated costs.

Scenario development
and target setting

EMEP

Modelling of pollutant
concentration across
Europe on 50 x 50 km
grid

Other models

TREMOVE
PRIMES
Etc.

RAINS model

Processing of
pollutant data

Assessment
vs. targets, e.g.
critical loads
exceedence,
mortality

Cost analysis

CBA

Quantification of impacts
Health, crops,
materials, social and
macroeconomic
effects, etc.

Monetisation of impacts
Where possible

Comparison of costs
and benefits

Extended CBA

Related activities
EC DG Research Programmes
UNECE Working Groups under Convention on Long-Range

Transboundary Air Pollution (CLRTAP)
WHO Europe commentary on air pollution impacts

Activities specific to CAFE

Quantification of benefits and comparison with costs

The methodology largely builds on the ExternE159 methodology called Impact
Pathway Analysis that, starting from the sources of pollution and actual emissions of
pollutants, identifies concentrations and exposure and finally arrives at the estimation
of impacts and their monetary valuation. This approach follows a logical progression
through the following stages:

– quantification of emissions (in CAFE, covered by the RAINS model);

– description of pollutant dispersion across Europe (in CAFE, covered by the
RAINS and EMEP models);

– quantification of exposure of people, environments and buildings that are affected
by air pollution;

159 European Commission, DG Research, ExternE – Externalities of Energy, EC, Luxembourg, Vol. 1 to

10, 1995 and 1999.

Deutscher Bundestag – 16. Wahlperiode – 239 – Drucksache 16/1814

– quantification of the impacts of air pollution;

– valuation of the impacts; and

– description of uncertainties (in CAFE, with specific reference to their effect on the
balance between the costs of pollution control quantified by the RAINS model
and the associated benefits).

The quantification of impacts varies, depending on the availability of data and
models:

– For health impacts, damage to crops and damage to building materials, it is
generally possible to quantify the impacts including their values. Uncertainties can
be addressed using statistical methods and sensitivity analysis.

– For damage to ecosystems and cultural heritage, it is possible to quantify the
impacts relative to a measure of risk. However, it is not possible to value these
impacts in the analysis. Examples of risk measures include:

– the rate of deposition of acidifying pollutants relative to the critical load
for acidification (as an indicator of the risk of acidification to
biodiversity); and

– the rate of corrosion of building materials as an indicator of risks to
historic monuments.

– Other impacts are not currently quantifiable in terms of impact or monetary
value, permitting only a qualitative analysis. Examples include reduced
visibility due to air pollution and the social dimensions of health impacts.

Given the limits to quantification, an ‘extended CBA’ has been developed. The
purpose is to provide a complete picture of whether the effects that have not been
valued or quantified could have a significant effect on the balance of costs and
benefits. For each impact a data sheet has been prepared containing the following
types of information:

– definition of impact;

– knowledge of the link to air pollution;

– distribution of impacts across Europe;

– contextual information on the scale of associated economic effects;

– consideration of whether the impact seems likely to be important as far as the
CAFE Programme is concerned, giving reasons for conclusions drawn.

Assessing the benefits of reduced air pollution for human health

Earlier cost-benefit analysis has shown that health impacts will generate the largest

quantified monetary benefits when air pollution is reduced. The pollutants of most
concern here are fine particles and ground-level ozone, both of which occur naturally

Drucksache 16/1814 – 240 – Deutscher Bundestag – 16. Wahlperiode

in the atmosphere. Fine particle concentrations close to ground level are increased by
emissions from human activity, whether through direct emissions of ‘primary’
particles or indirectly through the release of gaseous pollutants (especially SO2, NOx
and NH3) which react in the atmosphere to form ‘secondary’ particles. Ozone
concentrations close to ground level are increased by anthropogenic emissions,
particularly of VOCs and NOx.

The quantification of health impacts addresses the impacts related to both long-term
(chronic) and short-term (acute) exposures. The quantification deals with both
mortality (i.e. deaths) and morbidity (i.e. illness). The mortality effects quantified in
the CAFE cost-benefit analysis include impacts on infants as well as adults. The
morbidity effects that can be quantified include major effects, such as hospital
admissions and the development of chronic respiratory disease. They also include
less serious effects, which are likely, however, to affect a greater number of people,
for example changes in the frequency of use of medicine to control asthma and days
of restricted activity. When the impact and the values are combined in the analysis,
the most important health-related issues are mortality, restricted activity days and
chronic bronchitis.

Major advances have been made in health valuation in recent years. The latest
European “willingness to pay” estimates have been included in the CAFE CBA
methodology. Accordingly, the most up-to-date information is adopted for a range of
morbidity effects and mortality in the context of air pollution. The question of the
method which should be used to value mortality is still being debated. The two
methods which can be used – value of statistical life (VSL, applied to the change in
number of deaths) and value of life year (VOLY, applied to changes in life
expectancy) – have contrasting strengths and weaknesses. For the CAFE CBA
methodology, the independent external peer reviewers suggested that both the VSL
and the VOLY approaches be used to show transparently the uncertainty inherent in
these two approaches.

Assessing the benefits of reduced air pollution for the environment

Ozone is recognised as the most serious regional air pollution problem for agriculture
in Europe. The literature has linked some air pollutants other than ozone to crop
damage (e.g. SO2, NO2, NH3), but generally at higher levels than are currently
experienced. When developing the CAFE CBA methodology it was concluded that
the direct impacts of these pollutants on agriculture are likely to be small. By
contrast, the indirect effects of these pollutants could be significant. This is mainly
because air pollution could stimulate the performance of insects and other
agricultural pests, which would then have a more severe impact on crop yield than
they would have done without air pollution. Development of methods in this area has
drawn, in particular, on the Integrated Cooperative Programme (ICP) on Vegetation,
and ICP/MM (Mapping and Modelling).

The methods for quantification of damage to materials are based on work carried out
by the ICP Materials Europe-wide International Cooperative Programme and
quantification under various studies for DG Research, particularly ExternE and

associated projects such as GARP (Green Accounting Research Project). The most
significant impacts are on natural stone and zinc-coated materials. The ‘impact
pathway’ approach works well for applications in everyday life. This could, in

Deutscher Bundestag – 16. Wahlperiode – 241 – Drucksache 16/1814

theory, be applied to cultural and historic buildings. However, in practice there is a
lack of data at several points in the impact pathway with respect to the stock at risk
and valuation. As a result, the effects of air pollution on cultural heritage cannot be
quantified and therefore need to be addressed qualitatively through the extended
CBA framework.

The effects of acidification, eutrophication and ground-level ozone can be expressed
in general terms as ranging from loss of species (e.g. trout and salmon from rivers
and lakes in northern Europe) to more subtle effects, for example the relative
abundance of different species in grassland or moorland. Stock at risk data for
ecosystem impacts have been collated over a period of many years through the
Coordination Centre for Effects in the Netherlands. A framework for describing
exceedance of critical loads and levels is included in the RAINS model. Valuation of
these impacts is not yet possible because of limited research in this area of specific
relevance to reductions in air pollutant emissions. The effects of reduced air pollution
on ecosystems will therefore be calculated as part of the extended CBA, drawing
extensively on the results generated by RAINS.

One major outcome of the process will be an updated BeTa table160 which shows the
value of a reduction of one tonne of pollutant in a specific location.

GEM-E3 general equilibrium model

Macro-economic effects have been assessed with the GEM-E3161 model, an applied
general equilibrium model simultaneously representing world regions or EU Member
States linked through endogenous bilateral trade. GEM-E3 aims at covering the
interactions between the economy, the energy system and the environment. The
model simultaneously calculates the competitive market equilibrium under the
Walras law and determines the optimum balance for energy demand/supply and
emission/abatement. One major aim of GEM-E3 in supporting policy analysis is
consistent evaluation of distributional effects across countries, economic sectors and
operators. It implicitly assumes that while the EU implemented, for instance,
additional air pollution abatement policies the rest of the world would not do so.

Although global, the model exhibits a sufficient degree of disaggregation concerning
sectors, structural features of energy/environment and policy-oriented instruments
(e.g. taxation). The model formulates production technologies on an endogenous
basis allowing for price-driven derivation of all intermediate consumption and
services from capital and labour. On the demand-side the model formulates
consumer behaviour and distinguishes between durable (equipment) and consumable
goods and services. The model is dynamic, driven by accumulation of capital and
equipment. Technological progress is explicitly represented in the production
functions and for each production factor.

The model formulates pollution permits for atmospheric pollutants and flexibility
instruments allowing for a variety of options, including allocation (grandfathering,
160
See http://europa.eu.int/comm/environment/enveco/air/betaec02aforprinting.pdf
161 GEM-E3 has been developed as a multinational collaboration project, partly funded by the European

Commission, DG Research, 5th Framework programme and by national authorities. Further
developments are continuously under way : see http://www.gem-e3.net.

Drucksache 16/1814 – 242 – Deutscher Bundestag – 16. Wahlperiode

auctioneering, etc.), user-defined bubbles for traders, various exemption schemes,
various systems for revenue recycling, etc.

The model evaluates the energy-related emissions of CO2, NOx, SO2, VOC and PM
as a function of the energy consumption and abatement level per branch and per
pollutant. These emissions are then converted into the concentrations/depositions of
pollutants, taking into account the transportation (between countries) and
transformation of the pollutants. In the final step, the damage generated by these
concentrations/depositions of pollutants is calculated in physical units and valued
through the valuation function.

Three types of instruments are formulated: taxes, tradable pollution permits and
emission standards (upper bounds on sectors and/or countries). A variety of policy
regimes associated with these instruments are considered (burden-sharing rules,
limits on trade, recycling mechanism). The possibility for market forces on permit
markets is also modelled.

Calibration of GEM-E3 to RAINS

The emissions of the different pollutants (NOx, SO2, VOC, PM10 and NH3) have been
calibrated to the RAINS baseline scenario associating the RAINS activities with the
GEM-E3 sectors. A distinction is drawn between emissions linked to energy
consumption and emissions linked to the production of a given sector, depending on
the emission source identified in RAINS. Emission coefficients were calculated for
2000 and then an evolution factor for 2000-2020 was applied, based on the evolution
in the RAINS data. For the emissions linked to production, only the PM and VOC
emissions were adapted.

The marginal abatement cost curves per sector and per country were estimated on the
basis of the cost curves from RAINS, after aggregating the data into the GEM-E3
classification. It was not possible to derive abatement cost curves for all pollutants
and all sectors, because the number of abatement technologies considered in RAINS
was too small for some pollutants and sectors.

The conversion of bottom-up data from RAINS into data for the GEM-E3 aggregate
sectors can only be approximate. This increases the margins of error in the results
with GEM-E3. The aggregate level of GEM-E3 should give a reasonably accurate
initial evaluation of the macroeconomic impact of policies aiming at reducing air
pollution. However, the analysis at sector and, in particular, Member State level is
surrounded by relatively large uncertainties.

The benefits of reducing air pollution are evaluated with the figures calculated by the
cost-benefit analysis for the damage per tonne of pollutant in each EU Member State.
This allows calculation of the total EU-wide benefit from the reduction in air
pollution but no allocation by country. The evaluations are carried out with the ‘low’
damage figure from AEAT.

The scenarios modelled in GEM-E3
The baseline scenario in the impact assessment assumed that the EU will achieve its
Kyoto objective and that it will continue implementing a climate policy beyond

Deutscher Bundestag – 16. Wahlperiode – 243 – Drucksache 16/1814

2012. Specifically, it was assumed that a “shadow price” of a climate policy operated
in the PRIMES model (i.e. a recyclable CO2 tax) would ensure some decarbonisation
in the EU as a whole up to 2020. The “shadow price” was assumed to be €12/tonne
in 2010, €16/tonne in 2015 and €20/tonne in 2020. The revenues from the tax were
recycled in GEM-E3 model runs through a reduction in the employers’ social
security contribution. Also it was assumed that the resource allocation induced by the
policy occurs within the EU by imposing the condition that the EU current account
remains constant relative to GDP compared to the reference through a flexible
interest rate. These assumptions were maintained in all policy scenarios.

The ambition levels, as derived from the aggregation into the sectors covered by
GEM-E3 of the reduction imposed by RAINS, have been incorporated as a constraint
into GEM-E3 in 2020. The associated costs were calculated in the model, given the
marginal abatement cost curves by sector estimated on the basis of the RAINS
marginal cost curves. The additional measures on transport going beyond the current
legislation have also been implemented. GEM-E3 does not include all the reduction
imposed in RAINS162 but it includes the reduction induced by the decrease in energy
consumption or sectoral demand due to the price increase.

UNCERTAINTY

If the costs and benefits of air pollution control were known with absolute confidence
there would be no problem in comparing the two. However, costs and benefits are
subject to uncertainties, some of which (on both sides of the cost-benefit equation)
are significant. Knowledge of these uncertainties and the availability of information
to describe them vary. Furthermore, some uncertainties are statistical and continuous
in nature, others relate to discrete choices (e.g. selection of approaches for the
valuation of air-pollution–related mortality) whilst yet others simply stem from a
lack of knowledge. It is clear from this that it will be difficult to develop a fully
consistent approach to define uncertainty across the entire CAFE analysis.

Consideration of uncertainty in any comparison of costs and benefits cannot,
therefore, be an automatic process. Awareness needs to be raised of the component
uncertainties of each part of the analysis. The most important of these component
uncertainties should be highlighted and quantified to the extent possible. Account
also needs to be taken of how satisfactory the assessment of uncertainty is. Although
assessment of uncertainty is complex, it is simplified to an extent by the fact that a
small number of issues are likely to dominate any consideration of uncertainty163.
These are:

– quantification of the mortality impact of exposure to fine particles;

– valuation of mortality impacts from particles and other pollutants;

– assessment of effects of chronic exposure to particles on the prevalence of
bronchitis;

162 For some sectors there are no abatement cost curves (cf. above).
163 In some situations others may become important, but in general those listed here will dominate.

Drucksache 16/1814 – 244 – Deutscher Bundestag – 16. Wahlperiode

– attribution of effects to individual species of particle or other pollutants;

– failure to quantify monetary benefits with respect to ecosystems;

– inter-annual variability in meteorology;

– various types of uncertainty in cost estimates.

Uncertainties in RAINS modelling

The RAINS model is used to calculate pollution loadings, environmental impacts and
cost-effective strategies. The RAINS peer review team identified four key
uncertainties associated with these calculations:

(1) uncertainties in basic scientific understanding;

(2) uncertainties due to assumptions and simplifications in the handling of data or
the design of elements of the RAINS model which could introduce biases;

(3) uncertainties due to statistical variance in input data collection;

(4) uncertainties related to socio-economic and technological development.

It is impossible to quantify uncertainties stemming from incomplete scientific
information and knowledge gaps. However, sensitivity scenarios can be devised to
test the model’s robustness against differences in scientific understanding (e.g. health
impacts) and also to test different assumptions concerning socio-economic and
technological development. For example, one scenario with relatively severe CO2
reductions and another ignoring health effects due to secondary aerosols have both
been tested. In both cases the central scenarios for the Strategy were robust against
different underlying assumptions.

A statistical analysis was conducted of the uncertainties associated with key input
parameters for the RAINS model using error propagation analysis. When
uncertainties in emissions, atmospheric transport, deposition and critical loads are
combined, the overall error in critical load exceedances is predicted to be in the order
of 5%. This is lower than the estimate error for any of the individual parameters due
to the fact that the parameters are independent of each other.

The effects of other potential biases in the RAINS model can also be minimised by
the way the model framework is constructed and operated. For example, setting
environmental targets on a relative basis (“gap closure”) can reduce the effect of
absolute biases. In addition, a conservative approach is taken to the selection of cost
data and the abatement potential of technologies to avoid overestimating the potential
of the control strategies modelled.

The impact assessment includes an additional sensitivity analysis linked with
alternative theories on the health impact of PM (primary versus secondary particles)
and the implications of post-Kyoto climate regimes. Further sensitivity analyses will

be conducted in the context of revision of the NEC Directive, such as taking into
account national energy and agricultural projections and inter-annual meteorological
variability.

Deutscher Bundestag – 16. Wahlperiode – 245 – Drucksache 16/1814

Uncertainties in cost-benefit analysis

A variety of methods for dealing with uncertainties in the CAFE-CBA have been
investigated, including164:

– statistical techniques, for uncertainties which can be described quantitatively;

– sensitivity analysis, for demonstrating the effect of discrete choices made in the
methodology, such as:

– systematic variation in single parameters;

– use of different methods for mortality valuation;

– use of single years to describe meteorology in pollutant modelling;

– bias analysis, frequently linked to gaps in the analysis (e.g. the omission of
abatement techniques from the cost assessment or the omission of impacts
from the benefits analysis). Given that these uncertainties are by definition
unquantifiable, normally they can only be dealt with subjectively. However,
sufficient information exists to differentiate between what is and what is not
important and to determine the direction of bias introduced to the analysis.

Statistical uncertainties are investigated in depth for the benefits analysis. The report
identifies the method to be used, likely ranges in terms of 90% confidence intervals
around best estimates for PM and ozone damage, and the parameters which have the
greatest effect. Combined assessment of PM and ozone uncertainties is a simple
extension of the method and will be carried out during scenario investigation. Given
that mortality is the predominant impact in the PM assessment it is not surprising that
the most influential uncertainties there concern quantification and valuation of
mortality. For ozone, the picture is more mixed, with mortality and minor restrictions
on activity both important contributors. When the ‘sensitivity’ functions are added in,
uncertainties on assessment and valuation of respiratory symptoms in adults
predominate in the case of ozone. None of the sensitivity functions has any
significant effect on uncertainties in PM assessment.

For scenario analysis the quantified variation in benefit estimates can now be used to
quantify the probability that benefits will exceed the point estimates of costs
generated by the RAINS model. Similar statistical assessment of errors in these cost
estimates is not yet possible. However, it is possible to investigate the effect of
uncertainty in costs using a stepwise sensitivity analysis. This would involve
assessment of the probability of benefits exceeding a series of cost estimates varying
by set percentages around the core estimates from RAINS. Turning to sensitivity
analysis, the following conclusions have been drawn:
164 Methodology for the Cost-Benefit Analysis of the CAFE Programme - Part 3: Uncertainty (AEAT,

April 2005).

Drucksache 16/1814 – 246 – Deutscher Bundestag – 16. Wahlperiode

– Statistical analysis shows that variation in results due to different methods for
mortality valuation is not as large for PM assessment as originally suspected,
with significant overlap in the ranges for VOLY (value of life year) and VSL
(value of statistical life) methods. However, it is significant enough to include
separate results for the two approaches when reporting.

– Sensitivity to differences in the risks posed by different types of particle will be
investigated if and when proposals are made for future policy assessments.

– The effect of the use of a cut-point for the ozone health assessment will be
factored into the stratified sensitivity analysis where there is specific concern
over the effects of ozone. Where ozone is not a key driver this sensitivity is
unlikely to be important.

– The choice of meteorological year is important for modelling pollutant
dispersion and chemistry. It can be accounted for by using four different and
contrasting meteorological years (1997, 1999, 2000 and 2003). Where this is
not done, the effect on health impact assessment can be estimated for each
country by reference to figures presented in the report.

– The stratified sensitivity analysis used previously in assessment of the NEC
and Ozone Directives and the Gothenburg Protocol should be retained
principally for ozone assessments. For scenarios dominated by PM it plays a
smaller role because of the higher confidence in quantification of the dominant
impact (mortality) and the very limited effect of the functions identified in
Volume 2 for sensitivity analysis. These add just a few percent to the total PM
damage.

The results of the EMEP, RAINS and CAFE-CBA models are inevitably subject to a
number of unquantified biases in addition to the uncertainties already mentioned.
The most important of these are:

– EMEP modelling: omission of secondary organic aerosols;

– RAINS modelling: emission starting point bias, omission of some abatement
techniques, failure to take account of future technical developments and lack of
differentiation of particle species by effect;

– Benefits modelling: omission of impacts on ecosystems and cultural heritage
and non-differentiation of particle species by effect.

The analysis undertaken here provides an indication of the direction and potential
importance of these biases. It should be noted that the scale of bias can be very
substantial and, as such, could affect the conclusions drawn on the balance of costs
and benefits, although this is likely to vary considerably between regions and
scenarios. Knowledge of these biases, however, opens up the possibility of factoring
them into appraisal of the results of the cost-benefit analysis, for example, using
stepwise sensitivity analysis. The need to do so depends on the initial outcome of the
CBA and the likely direction of the most important biases.

Deutscher Bundestag – 16. Wahlperiode – 247 – Drucksache 16/1814

Clearly, these uncertainties should not be considered in isolation. Stakeholders
should instead seek to develop an overview of them in order to understand the
reliability of any conclusions drawn on the balance of costs and benefits for
particular cases. A protocol is being defined so that information on the different
uncertainties present can be brought together in a unified assessment.

x

Schnellsuche

Suchen Sie z.B.: "13 BGB" oder "I ZR 228/19". Die Suche ist auf schnelles Navigieren optimiert. Erstes Ergebnis mit Enter aufrufen.
Für die Volltextsuche in Urteilen klicken Sie bitte hier.